
Journal of Mathematical Chemistry (2019) 57:1314–1329
https://doi.org/10.1007/s10910-018-0966-6

ORIG INAL PAPER

The noisy Pais–Uhlenbeck oscillator

E. Urenda-Cázares1 · P. B. Espinoza1 · A. Gallegos1 · R. Jaimes-Reátegui1 ·
J. E. Macías-Díaz2 · H. Vargas-Rodríguez1

Received: 15 June 2018 / Accepted: 13 October 2018 / Published online: 22 October 2018
© Springer Nature Switzerland AG 2018

Abstract
In this paper, we include simultaneously additive and multiplicative noise to the Pais–
Uhlenbeck oscillator (PUO). We construct an integral of motion of the PUO with a
time-dependent coefficient. Viewing the PUO as two coupled harmonic oscillators, we
add noise to the corresponding frequencies. The systems are solved with the fourth-
order stochastic Runge–Kutta method. Some graphics of the solutions and integrals
of motion are presented, and the average deviations are calculated in order to quantify
the noise influence.

Keywords Pais–Uhlenbeck oscillator · Additive noise · Multiplicative noise ·
Integral of motion · Runge–Kutta method

Mathematics Subject Classification 34F05 · 60H10 · 93E03

1 Introduction

One of the best-known models with high-order derivatives is the Pais–Uhlenbeck
oscillator (PUO) [1]. This model was originally proposed in order to solve divergence
problems in quantumfield theory. Several studies on thismodel have been performed in
the literature, like some Hamiltonian formulations and their canonical quantizations
[2], some supersymmetric extensions [3,4], investigations on ghosts and unitarity
violations [5] or some stability analyzes [6]. In particular, Bolonek and Kosinski [7]
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carried out an exhaustive study on the Hamiltonian structure of PUO using its integrals
of motion.

The PUO is usually written in the following form:

d4x

dt4
+ c

d2x

dt2
+ ex = f (t). (1.1)

Here, c and e are real constants. Note that we have included the forced term f (t). This
oscillator can be interpreted as two coupled harmonic oscillators with frequencies ω1
and ω2, where c = ω2

1 + ω2
2 and e = ω2

1ω
2
2 (see [2,7]). In chemistry, the inclusion of

noise has been an efficient tool to model environmental effects in the chemical kinetics
[8], chirality [9] or electron transfer reactions [10]. In particular, noisy coupled oscil-
lator systems have been used to model solid state dynamics at low temperatures [11]
or photosynthetic systems [12]. On the other hand, stochastic differential equations
can be useful to model systems in physics, economy, biology, etc. [13,14].

The aim of this work is to consider possible stochastic perturbations in the form
of white noise in the PUO. This idea has been widely discussed by Gitterman in [15]
for the harmonic and some nonlinear oscillators, and also in Ermakov–Lewis systems
and their invariants [16–18]. In addition, there are works on numerical simulations
of stochastic linear oscillators [19]. In particular, we are interested in quantifying the
influence on the solutions of PUO under little perturbations. As it is well known,
the noise can be included in additive form (which can be interpreted as an external
perturbation to the system) and multiplicatively (that is, viewed as internal noise). Of
course, these noises can be implemented simultaneously. In this sense, the additive
noise can be included directly in (1.1) in the usual way. However, there are at least two
ways to include the multiplicative noise: the simplest case where it is included on the
dependent variable x(t), or as a perturbation on the primary frequencies ω1 and ω2.
Also, it is possible to investigate noise effects on an integral of motion of the PUO.

This paper is organized as follows. In Sect. 2, we include additive andmultiplicative
noise to the PUO in the usual form. In Sect. 3, we construct an integral of motion for
the PUO but taking the coefficient e as time dependent, and also include additive
and multiplicative noise on it. In Sect. 4, we consider the inclusion of additive and
multiplicative noise, but the latter is added as a perturbation on the primary frequencies
of the oscillator. In Sect. 5, the results are discussed and, finally, a brief conclusion is
presented.

2 Noise in the PUO

To include simultaneously both additive andmultiplicative noises in the equation (1.1),
it is convenient to rewrite the mathematical model in the form

dXt = a(t, Xt )dt + A(t, Xt )d At + M(t, Xt )dMt , (2.1)
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where At andMt are the normalized stochastic variables, and the vectors dXt , a(t, Xt ),
A(t, Xt ) and M(t, Xt ) are

⎧
⎪⎪⎨

⎪⎪⎩

dXt = (dx, dẋ, dẍ, d
...
x )�,

a(t, Xt ) = (ẋ, ẍ,
...
x ,−cẍ − ex + f (t))�,

A(t, Xt ) = (0, 0, 0, αA)�,

M(t, Xt ) = (0, 0, 0, αMxn)�.

(2.2)

The point means temporal derivative, αA is the additive noise intensity, αM is the
multiplicative noise intensity and the power n is equal to 1. We can use a general
function of x for multiplicative noise, but we preferred to use the simplest possible
form.

To obtain the numerical results, we let c = 5 and e = 4, and use the initial conditions
x(0) = 1, ẋ(0) = 0, ẍ(0) = 1 and

...
x (0) = 0. We will study the homogeneous

PUO with f (t) = 0 and the forced PUO with f (t) = sin2(3t). For the intensity of
additive noise, we use αA = 0.02, 0.1, that approximately correspond to 1% and 5%
of the amplitude of the solution, respectively. For the multiplicative noise, we employ
αM = 0.04, 0.2, which correspond respectively to 1% and 5% of the parameter e.
We solve the equation (2.1) using the fourth-order Runge–Kutta method. This method
has been preferred in light that it yields better results when compared with others
approaches [20]. We generated the normalized stochastic variable using the Box-
Müller algorithm [21]. The results for simultaneous additive–multiplicative 1% and
5% noise for homogeneous PUO and forced PUO are shown in Fig. 1.

To measure quantitatively the noise influence, we get the corresponding average
deviation S of the noisy solutions with respect to the noiseless solution.1 The results
are shown in Table 1. Obviously, we can see more noise influence as the percentage
increases. However, note that the additive noise affects similarly the homogeneous
and the forced PUO, but the multiplicative noise perturbs more the solutions than the
additive one in both cases (see for example rows 2 and 6 of Table 1).

3 Noise in an integral of motion

Note that in the previous section, the multiplicative noise can be viewed as a time-
dependent coefficient of the PUO (1.1), which means that it can be written as

d4x

dt4
+ c

d2x

dt2
+ e(t)x = f (t), (3.1)

where the additive noise can be added to the forced term f (t) in similar form to the
previous section. On the other hand, we can find two integrals of motion (also called

1 We calculate S as

S =
√

∑N
i=1

(
xi,nonoise − xi,noise

)2

N
(2.3)

where N is the number of steps in the Runge–Kutta method.
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Fig. 1 Solution of homogeneous (up) and forced (down) PUO with simultaneous additive–multiplicative
noise. Red color corresponds to the solution without noise, black color corresponds to the solution with
noise intensity αA = 0.02, αM = 0.04 (1%) and blue color corresponds to the solution with noise intensity
αA = 0.1, αM = 0.2 (5%) (Color figure online)

dynamical invariants) for (1.1) in [7]. However, the situation is different if we look for
an integral of motion for the non-autonomous PUO (3.1). In that case, the problem
is similar to the well-known Ermakov–Lewis invariant, which is associated to the
integral of motion of an oscillator where the frequency dependents on time [22,23].
In this section, we will obtain an integral of motion for (3.1), following the dynamic
algebraic formalism proposed by Korsch [24]. Afterwards, we will show the noise
effects on the integral of motion, paraphrasing the study of the noisy Ermakov–Lewis
invariants [16–18].
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Table 1 Average deviations of the homogeneous and the forced PUO with all possible combinations of 1%
and 5% simultaneous additive–multiplicative noise

Additive noise percent (%) Multiplicative noise percent (%) Average deviation S

Homogeneous PUO

1 0 0.01246

5 0 0.07544

0 1 0.04403

1 1 0.03205

5 1 0.08023

0 5 0.16178

1 5 0.17703

5 5 0.17914

Forced PUO

1 0 0.01326

5 0 0.06396

0 1 0.02774

1 1 0.03124

5 1 0.07977

0 5 0.11285

1 5 0.20076

5 5 0.17168

The first step is to obtain a Lagrangian associated to the Eq. (3.1). To achieve
this goal, we write the Euler–Lagrange (EL) equation for a high-order derivative
Lagrangian of the type L = L(x, ẋ, ẍ, t) [25]:

d2

dt2

(
∂L

∂ ẍ

)

− d

dt

(
∂L

∂ ẋ

)

+ ∂L

∂x
= 0. (3.2)

Expanding the terms of the EL Eq. (3.2) with the Lagrangian L = L(x, ẋ, ẍ, t) and
comparing with the terms in the equation of motion (3.1), we obtain the Lagrangian

L(x, ẋ, ẍ, t) = 1

2
ẍ2 − c

2
ẋ2 + 1

2
e(t)x2 − f (t)x . (3.3)

Now, we will use the Ostrogradsky’s formalism, which has been designed for
Lagrangians and Hamiltonians containing derivatives of higher order [26]. First, one
should get the new coordinates andmomenta. These are defined generically as follows:

q j = d j−1

dt j−1 x, (3.4)

p j =
n∑

r=1

(−1)r− j dr− j

dtr− j

∂L

∂x (r)
. (3.5)
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In the particular case of (3.3), they assume the form (q1, q2, p1, p2) = (x, ẋ,−cẋ −...
x , ẍ). The Hamiltonian is obtained then by means of the usual Legendre transforma-
tion

H = 1

2
p22 + p1q2 − 1

2
e(t)q21 + c

2
q22 + f (t)q1. (3.6)

Using the conventional Hamilton equations, it is easy to prove that they provide the
equation of motion (3.1).

Following the dynamic algebraic formalism [24], we propose the following basis
for a representation of the Lie algebra using the terms of the Hamiltonian (3.6):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1 = I , L6 = q1q2, L12 = q21 ,
L2 = q1, L7 = q1 p1, L13 = q22 ,
L3 = q2, L8 = q1 p2, L14 = p21,
L4 = p1, L9 = q2 p1, L15 = p22,
L5 = p2, L10 = q2 p2, L11 = p1 p2.

(3.7)

Thus the Hamiltonian (3.6) written in terms of the basis (3.7) will be

H = 1

2
L15 + L9 − 1

2
e(t)L12 + c

2
L13 + f (t)L2, (3.8)

where we have eliminated the term proportional to L1 since the identity commutes
with all the elements of the basis. The commutator is the Poisson bracket, which is
defined in the following way [27]:

{ f , g} = ∂ f

∂ p1

∂g

∂q1
− ∂ f

∂q1

∂g

∂ p1
+ ∂ f

∂ p2

∂g

∂q2
− ∂ f

∂q2

∂g

∂ p2
. (3.9)

Therefore, one obtains the nontrivial commutators

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{L2, L4} = −L1, {L4, L7} = L4, {L8, L11} = −L15, {L3, L5} = −L1,
{L5, L9} = L4, {L9, L12} = 2L6, {L4, L6} = L3, {L6, L8} = −L12,

{L10, L15} = −2L15, {L5, L6} = L2, {L6, L15} = −2L8, {L2, L11} = −L5,
{L6, L7} = −L6, {L7, L9} = −L9, {L3, L11} = −L4, {L6, L14} = −2L9,

{L8, L10} = L8, {L4, L12} = 2L2, {L7, L8} = L8, {L9, L11} = −L14,
{L5, L13} = 2L3, {L8, L9} = L7 − L10, {L10, L13} = 2L13, {L6, L10} = −L6,
{L9, L10} = −L9, {L11, L13} = 2L9, {L7, L12} = 2L12, {L10, L11} = −L11,
{L2, L9} = −L3, {L8, L13} = 2L6, {L11, L12} = 2L8, {L3, L10} = −L3,

{L9, L15} = −2L11, {L12, L14} = −4L7, {L4, L8} = L5, {L2, L14} = −2L4,
{L13, L15} = −4L10, {L5, L10} = L5, {L3, L15} = −2L5, {L2, L7} = −L2,

{L6, L9} = −L13, {L6, L11} = −L7 − L10, {L3, L8} = −L2, {L7, L11} = −L11,
{L7, L14} = −2L14, {L8, L14} = −2L11.

(3.10)
The integral of motion will be a linear combination of the elements of the basis:

I = ∑
λi (t)Li . This linear combination will be an integral of motion if it satisfies the

well-known equation {H , I }+ ∂ I
∂t = 0 [27]. Using substitutions and the commutators

(3.10), we obtain the following system of equations for the coefficients λ:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1(t) = f (t)λ4(t), λ̇2(t) = f (t)λ7(t) − e(t)λ4(t),
λ̇3(t) = cλ5(t) + f (t)λ9(t) − λ2(t), λ̇4(t) = λ5(t) + 2 f (t)λ14(t),
λ̇5(t) = f (t)λ11(t) − λ3(t), λ̇6(t) = cλ8(t) − 2λ12(t) − e(t)λ9(t),
λ̇7(t) = λ8(t) − 2e(t)λ14(t), λ̇8(t) = −λ6(t) − e(t)λ11(t),
λ̇9(t) = λ10(t) + cλ11(t) − λ7(t), λ̇10(t) = 2cλ15(t) − 2λ13(t) − λ8(t),

λ̇11(t) = 2λ15(t) − λ9(t), λ̇12(t) = −e(t)λ7,
λ̇13(t) = cλ10(t) − λ6(t), λ̇14(t) = λ11(t),
λ̇15(t) = −λ10(t). (3.11)

The solution of the system of equations (3.11) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(t) =
∫

f (t)ψ(t)dt,

λ2(t) = −4 f (t)ρ̈(t) − 5 ḟ (t)ρ̇(t) − 2 f̈ (t)ρ(t) − 2c f (t)ρ(t)
−2 f (t)φ(t) + ...

ψ(t) + cψ̇(t),
λ3(t) = 3 f (t)ρ̇(t) + 2 ḟ (t)ρ(t) − ψ̈(t),
λ4(t) = ψ(t),
λ5(t) = −2 f (t)ρ(t) + ψ̇(t),
λ6(t) = −ρ(5)(t) − c

...
ρ(t) − 3e(t)ρ̇(t) − 2ė(t)ρ(t) − 3

...
φ(t),

λ7(t) = ...
ρ(t) + cρ̇(t) + 3φ̇(t),

λ8(t) = ρ(4)(t) + cρ̈(t) + 2e(t)ρ(t) + 3φ̈(t),
λ9(t) = −ρ̈(t) − 2φ(t),

λ10(t) = φ̇(t),
λ11(t) = ρ̇(t),

λ12(t) = 1
2ρ

(6)(t) + cρ(4)(t) + 2e(t)ρ̈(t) + c2
2 ρ̈(t) + 5

2 ė(t)ρ̇(t) + ë(t)ρ(t)
+ce(t)ρ(t) + 3

2φ
(4)(t) + 3c

2 φ̈(t) + e(t)φ(t),
λ13(t) = − 1

2ρ
(4)(t) − c

2 ρ̈(t) − e(t)ρ(t) − 2φ̈(t) − cφ(t),
λ14(t) = ρ(t),
λ15(t) = −φ(t).

(3.12)
Note that the function ψ(t) must satisfy the homogeneous equation of the PUO,

namely,
ψ(4)(t) + cψ̈(t) + e(t)ψ(t) = 0. (3.13)

Meanwhile, the function φ(t) satisfies the following set of auxiliary equations:

5 f (t)φ̇(t) + 2 ḟ (t)φ(t) = 0, (3.14)

3

2
φ(5)(t) + 3c

2

...
φ(t) + 4e(t)φ̇(t) + ė(t)φ(t) = 0, (3.15)

5
...
φ(t) + 2cφ̇(t) = 0. (3.16)

On the other hand, the function ρ(t) must satisfy simultaneously the following equa-
tions
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5 f (t)
...
ρ(t) − 9 ḟ (t)ρ̈(t) − [

7 f̈ (t) + 3c f (t)
]
ρ̇(t) − 2

[ ...
f (t) + c ḟ (t)

]
ρ(t) = 0,

(3.17)

1

2
ρ(7)(t) + cρ(5)(t) +

[

3e(t) + c2

2

]
...
ρ + 9

2
ė(t)ρ̈(t) +

[

2ce(t) + 7

2
ë(t)

]

ρ̇(t)

+ [
...
e (t) + cė(t)] ρ(t) = 0, (3.18)

and
3

2
ρ(5)(t) + 3c

2

...
ρ(t) + 4e(t)ρ̇(t) + 3ė(t)ρ(t) = 0. (3.19)

It is easy to check that the function φ(t)must be identically equal to zero in order to
fulfill the whole set of equations (3.14)–(3.16). Similarly, the function ρ(t) is also zero
if it satisfies the set of equations (3.17)–(3.19). Therefore, using the solution (3.12),
the integral of motion takes the form

I =
∫

f (t)ψ(t)dt +
[...
ψ(t) + cψ̇(t)

]
x + [−ψ̈(t) − cψ(t)

]
ẋ

+ ψ̇(t)ẍ − ψ(t)
...
x , (3.20)

where x and ψ are solutions of (3.1) and (3.13), respectively. One can check easily
by direct derivation that (3.20) is an integral of motion.

To investigate the noise effects on the integral of motion (3.20), we will use the
same results of Sect. 2 together with the solutions of the homogeneous PUO (3.13).
Note that those solutions can be written as

dΨt = a(t, Ψt )dt + M(t, Ψt )dMt , (3.21)

whereMt is the normalized stochastic variable, and the vectors dΨt , a(t, Ψt ),M(t, Ψt )

are ⎧
⎨

⎩

dΨt = (dψ, dψ̇, dψ̈, d
...
ψ)�,

a(t, Ψt ) = (ψ̇, ψ̈,
...
ψ,−cψ̈ − eψ)�,

M(t, Ψt ) = (0, 0, 0, αMψ)�.

(3.22)

It is important to note that the multiplicative noise used in (2.2) must be the same in
(3.22), in such a way that the time-dependent coefficient e(t) of (3.1) and (3.13) is
equal to the sum of the constant e and the corresponding multiplicative noise in each
case.

We obtain the noise effects on the integral of motion (3.20) using the same results
of Sect. 2 for the equation (3.1). More concretely, we solve (3.22) with the same
parameters, initial conditions and multiplicative noise. The results for the homoge-
neous case ( f (t) = 0) are shown in Fig. 2, and for the forced case ( f (t) = sin2(3t))
in Fig. 3. We calculate the corresponding average deviation S of the noisy integral
of motion respect to the non-noisy one, for all the cases used in Sect. 2. The results
are shown in Table 2. One can readily see that the integral of motion is practically
immune to the multiplicative noise, though it is not the case for the additive noise
where the integral of motion is visibly deformed. This deformation is greater for the
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Fig. 2 Integral of motion of the homogeneous PUO without noise (red), 1% (black) and 5% (blue) of
noise intensity for only multiplicative noise (up), only additive noise (middle) and simultaneous additive–
multiplicative noise (down) (Color figure online)
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Fig. 3 Integral of motion of the forced PUOwithout noise (red), 1% (black) and 5% (blue) of noise intensity
for only multiplicative noise (up), only additive noise (middle) and simultaneous additive–multiplicative
noise (down) (Color figure online)
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Table 2 Average deviations of
the integral of motion for the
homogeneous PUO ( f (t) = 0)
and the forced PUO
( f (t) = sin2(3t)) with all
possible combinations of 1%
and 5% simultaneous
additive–multiplicative noise

Additive noise per-
cent (%)

Multiplicative
noise percent (%)

Average devia-
tion S

Homogeneous PUO ( f (t) = 0)

1 0 0.04444

5 0 0.16240

0 1 0.00000

1 1 0.25246

5 1 0.23500

0 5 0.00000

1 5 1.04940

5 5 1.22141

Forced PUO ( f (t) = sin2(3t))

1 0 0.09075

5 0 0.30074

0 1 0.00007

1 1 0.15715

5 1 0.18914

0 5 0.00010

1 5 1.50531

5 5 1.18164

simultaneous additive–multiplicative noise. Note that similar results are obtained for
the Ermakov–Lewis invariant in [16–18].

4 Noise in the PUO as a perturbation of its primary frequencies

Now, we want to include simultaneously both additive and multiplicative noises in the
equation (1.1). In this case, the multiplicative case is viewed as a perturbation added
to the primary frequencies ω2

1 and ω2
2, where c = ω2

1 + ω2
2 and e = ω2

1ω
2
2. We will

consider three different and independent noises, so it is convenient to write (1.1) in
the form

dXt = a(t, Xt )dt + A(t, Xt )d At + M1(t, Xt )dM1t + M2(t, Xt )dM2t , (4.1)

where At , M1t and M2t are the normalized stochastic variables, and the vectors dXt ,
a(t, Xt ), A(t, Xt ), M1(t, Xt ) and M2(t, Xt ) are:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXt = (dx, dẋ, dẍ, d
...
x )�,

a(t, Xt ) = (ẋ, ẍ,
...
x ,−(ω2

1 + ω2
2)ẍ − (ω2

1ω
2
2)x + f (t))�,

A(t, Xt ) = (0, 0, 0, αA)�,

M1(t, Xt ) = (0, 0, 0, αM1(ẍ + ω2
2x))

�,

M2(t, Xt ) = (0, 0, 0, αM2(ẍ + ω2
1x))

�,

(4.2)
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Fig. 4 Solution of the homogeneous (up) and forced (down) PUOwith simultaneous additive–multiplicative
noise viewed as a perturbation on primary frequencies. Red color corresponds to the solution without noise,
black color corresponds to the solution with noise intensity αA = 0.02, αM1 = 0.01, αM2 = 0.04 (1%)

and blue color corresponds to the solution with noise intensity αA = 0.1, αM1 = 0.05, αM2 = 0.2 (5%)

(Color figure online)

where αA is the additive noise intensity, αM1 (respectively, αM2) is the noise intensity
added to ω2

1 (respectively, ω
2
2), and we have dropped terms of order α2.

To obtain numerical results, we set ω2
1 = 1 and ω2

2 = 4, with initial conditions
x(0) = 1, ẋ(0) = 0, ẍ(0) = 1 and

...
x (0) = 0. Similarly to previous sections,wewant to

study the homogeneous PUOwith f (t) = 0 and the forced PUOwith f (t) = sin2(3t).
For the intensity of additive noise we use the same αA = 0.02, 0.1, that correspond
respectively to 1% and 5% of the amplitude of the solution (approximately). For
multiplicative noise we use αM1 = 0.01, 0.05 that correspond respectively to 1%
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Table 3 Average deviations of
the homogeneous PUO with all
possible combinations of 1%
and 5% simultaneous
additive–multiplicative noise
viewed as a perturbation on
primary frequencies

Additive noise
percent (%)

ω2
1 noise per-

cent (%)
ω2
2 noise per-

cent (%)
Average
deviation S

1 0 0 0.01195

5 0 0 0.04536

0 0 1 0.02913

1 0 1 0.03223

5 0 1 0.11696

0 0 5 0.27124

1 0 5 0.18168

5 0 5 0.19914

0 1 0 0.02868

1 1 0 0.02305

5 1 0 0.07743

0 1 1 0.03844

1 1 1 0.04370

5 1 1 0.10593

0 1 5 0.19783

1 1 5 0.25317

5 1 5 0.23996

0 5 0 0.11812

1 5 0 0.11805

5 5 0 0.12044

0 5 1 0.15513

1 5 1 0.13622

5 5 1 0.12246

0 5 5 0.21587

1 5 5 0.26883

5 5 5 0.28908

and 5% of the parameter ω2
1, and αM2 = 0.04, 0.2 that corresponds to 1% and 5%,

respectively, of the parameter ω2
2.

Again, we solve the equation (4.1) using the fourth order Runge–Kutta method
[20], and we generate the normalized stochastic variable using the Box-Müller algo-
rithm [21]. The results for simultaneous additive–multiplicative 1% and 5% noise for
homogeneous PUO and forced PUO are shown in Fig. 4. As in Sect. 2, we obtain the
corresponding average deviation S of the noisy solutions respect the solution without
noise. The results are shown in Tables 3 and 4.

We can see more noise influence as the percentage increases. Similarly to Sect. 2,
we note that the additive noise affects similarly to the homogeneous and forced PUO,
but the multiplicative noise perturbs the solutions more in both cases (see for example
rows 2, 6, 18 and 24 in Tables 3 and 4). In addition, note that a perturbation on the
larger frequency ω2

2 is more significant than a perturbation on the smaller frequency
ω2
1.
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Table 4 Average deviations of
the forced PUO with all possible
combinations of 1% and 5%
simultaneous
additive–multiplicative noise
viewed as a perturbation on
primary frequencies

Additive noise
percent (%)

ω2
1 noise per-

cent (%)
ω2
2 noise per-

cent (%)
Average devia-
tion S

1 0 0 0.01124

5 0 0 0.04536

0 0 1 0.05938

1 0 1 0.02876

5 0 1 0.05854

0 0 5 0.16342

1 0 5 0.16354

5 0 5 0.23770

0 1 0 0.02888

1 1 0 0.02239

5 1 0 0.08771

0 1 1 0.04789

1 1 1 0.04400

5 1 1 0.10334

0 1 5 0.18205

1 1 5 0.11520

5 1 5 0.35892

0 5 0 0.09631

1 5 0 0.11410

5 5 0 0.15600

0 5 1 0.07883

1 5 1 0.16571

5 5 1 0.12452

0 5 5 0.22863

1 5 5 0.24910

5 5 5 0.31332

5 Discussions and conclusion

We have included simultaneously additive and multiplicative noise to the PUO, homo-
geneous and forced, with different intensities. Also, we investigate the noise effects on
an integral of motion of the PUO. After that, we have included noise as a perturbation
on the primary frequencies of the oscillator because the PUO can be viewed as two
coupled harmonic oscillators. After the numerical calculation we found that:

– The solution is more deformed with more noise intensity.
– The multiplicative noise affects more the solutions than the additive one.
– The integral of motion is practically immune to the multiplicative noise.
– The simultaneous noise increases more the deformation of the integral of motion
than individual noises.
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– Respect to the solutions, there is no significant difference between the average
deviation of the homogeneous and forced PUO.

– A perturbation on the larger frequency produces a larger effect in the solution.

The integral of motion is no affected for the multiplicative noise because by construc-
tion, this integral considers the multiplicative noise as part of the internal system. The
last sentence can be interpreted as if we have two coupled harmonic oscillators, any
perturbation on the oscillator with larger frequency will affect to a greater extent to
the whole system.

As conclusion of this work, we have implemented simultaneously additive and
multiplicative noise to the PUO, homogeneous and forced. We found that the solution
is more sensitive to the multiplicative noise. We construct an integral of motion for
the PUO when one coefficient is time dependent and we found this integral of motion
is highly immune to the multiplicative noise. Also, we investigate what happens if we
add noise to the primary frequencies of the oscillator if it is viewed as two coupled
harmonic oscillators. Considering that the PUO can be viewed as a two coupled har-
monic oscillators system, we think the results presented in this work can be useful to
investigate the corresponding noisy systems.
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