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A B S T R A C T   

In this manuscript, we derive integrals of motion for general anharmonic oscillators with damping and power- 
law forcing. The model under investigation has time-dependent coefficients, and the determination of these 
physical quantities is carried out using Noether’s theorem. The solutions must satisfy appropriate analytical 
conditions for the proposed quantities to be true integrals of motion. In turn, these analytical conditions are 
associated to well known physical systems, including the Milne-Pinney and Ermakov-Lewis models. We provide 
various numerical solutions of our equations of motion and the associated integrals to verify the theoretical 
results.   

1. Introduction 

Systems of nonlinear oscillators constitute some of the most impor-
tant problems in mathematical physics [1] in view of their many po-
tential applications to nonlinear physics [2–4]. One of the most notable 
nonlinear oscillators was investigated by G. Duffing (1918) to study the 
dynamics of oscillatory phenomena in physics [5]. Moreover, a gener-
alization of this nonlinear oscillator is found in the form of the Emden- 
Fowler equation (see [6] and references therein). As expected, the 
determination of exact analytical solutions for these and other nonlinear 
oscillators is a very difficult task in general, especially for non- 
autonomous systems (that is, systems in which the coefficients are 
dependent on time). It is worth mentioning that some of the most 
important time-dependent systems with applications in vibration me-
chanics, electromagnetism and particle physics are the so-called 
Mathieu-type equations [7]. 

From the analytical point of view, the dynamics of a nonlinear sys-
tem can be better understood using integrals of motion. Indeed, integrals 
of motion are usually employed to gather information about some 
important properties of physical systems [8]. Moreover, the resolution 
of some equations of motion may be simplified substantially if an 

integral of motion is determined. Indeed, these quantities are used to 
investigate analytical features of the solutions without solving the 
equations of motion. Alternatively, these quantities are employed to 
build Lyapunov functionals applying the Chetayev approach [9]. In fact, 
it is well known that Lyapunov functions provide information on the 
stability properties of the solution using the method of Lyapunov [10]. 
Alternatively, some analytical techniques have been employed to solve 
nonlinear systems, including the homotopy perturbation method for 
systems with variable coefficients [11] and the exp-function method 
[12]. 

The energy associated with a Hamiltonian in models with constant 
coefficients is an integral of motion. However, if the coefficients are 
time-dependent, then the determination of the expression of the in-
tegrals of motion may be an extremely difficult task. To alleviate this 
problem, the Ermakov-Lewis invariants were derived for temporally 
varying harmonic oscillators [13,14]. In [15], several generalizations of 
the invariants for these systems were introduced. Moreover diverse 
applications of these integrals in quantum mechanics and cosmology 
were disused in [16,17]. For more complex models, these physical 
quantities may be calculated by conditioning the solutions [18,19]. In 
particular, an integral of motion for a Duffing model with cubic-quintic 
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Contents lists available at ScienceDirect 

Results in Physics 

journal homepage: www.elsevier.com/locate/rinp 

https://doi.org/10.1016/j.rinp.2021.104169 
Received 5 February 2021; Received in revised form 6 April 2021; Accepted 6 April 2021   

mailto:jemacias@correo.uaa.mx
mailto:ernesto.urenda@academicos.udg.mx
mailto:gallegos@culagos.udg.mx
www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2021.104169
https://doi.org/10.1016/j.rinp.2021.104169
https://doi.org/10.1016/j.rinp.2021.104169
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2021.104169&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results in Physics 25 (2021) 104169

2

forcing and non-autonomous regime was obtained in [20] for equations 
with nth power nonlinearities [21]. It is worthwhile to recall that some 
analytical techniques to obtain these physical quantities are based on 
transformation groups [22], dynamic and algebraic arguments [23,24] 
or Noether’s theorem [25,26]. 

The main goal of the present manuscript is to derive the integrals of 
motion for a forced and damped nth anharmonic oscillator with variable 
coefficients. To that end, our study will hinge on the application of 
Noether’s theorem. The remainder of this paper is arranged as follows. 
In Section 2, we obtain integrals of motion for nth anharmonic oscilla-
tors with time-dependent coefficients and the associated constraints that 
guarantee the existence of the solutions. Section 3 includes numerical 
examples to verify the theoretical findings. The computational tests 
prove that the physical quantities derived in this work are constant with 
respect to time, in agreement with the theoretical results. 

2. Integrals of motion 

The present manuscript employs the analytic formalism introduced 
by Lutzky in [25]. It is worth pointing out that this formalism is based on 
Noether’s theorem [26], and it is described in various papers available 
in the literature (see [20]). Concretely, we will employ the fact that the 
integral of motion corresponding to Lagrange’s functional L(x, ẋ, t) is 
readily derived if the transformation defined by means of the symmetry 
group operator is action-invariant. In fact, that physical quantity can be 
expressed by means of the formula 

I = F − ξL − (η − ξẋ)
∂L
∂ẋ

. (1)  

In this identity, F(x, t) is obtained by adding the derivative to L before 
our transformation, and the following analytical constraint must be 
satisfied: 

Ḟ(x, t) = ξ̇L+ η ∂L
∂x

+ ξ
∂L
∂t

+(η̇ − ẋξ̇)
∂L
∂ẋ

. (2)  

Here, η̇, ξ̇ and Ḟ are defined by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

η̇ = ẋ
∂η
∂x

+
∂η
∂t
,

ξ̇ = ẋ
∂ξ
∂x

+
∂ξ
∂t
,

Ḟ = ẋ
∂F
∂x

+
∂F
∂t

.

(3)  

2.1. Forced nth anharmonic oscillator 

We will consider firstly a forced anharmonic oscillator without 
damping governed by an nth power-law, and we will suppose that the 
coefficients are time-dependent. More concretely, let us consider the 
model 

d2x
dt2 + a1(t)x+ an(t)xn = f (t). (4)  

Notice that the Lagrangian L associated with the Eq. (4) is given by 

L =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

[

ẋ2 − a1(t)x2 −
2

n + 1
an(t)xn+1 + 2f (t)x

]

, for n ∕= − 1,

1
2
[
ẋ2 − a1(t)x2 + 2f (t)x − 2an(t)ln|x|

]
, for n = − 1.

(5)  

Applying the Euler-Lagrange equation to the Lagrangian (5), the equa-
tion of motion (4) is readily obtained. Substituting this Lagrangian into 
condition (2) together with the expressions for Ḟ and η̇ defined in 3, we 
obtain the following polynomial on x and ẋ, for n ∕= − 1: 

[
∂η
∂x

−
1
2
ξ̇
]

ẋ2 +

[
∂η
∂t

−
∂F
∂x

]

ẋ+
[

−
1

n + 1
ȧn(t)ξ

−
1

n + 1
an(t)ξ̇

]

xn+1 − an(t)ηxn +

[

−
1
2

ȧ1(t)ξ −
1
2
a1(t)ξ̇

]

x2 + x
[
ξḟ (t)

− ηa1(t) + f (t)ξ̇
]
+

[

ηf (t) −
∂F
∂t

]

= 0. (6)  

Using linear independence, each of the expressions of (6) in brackets 
must be equal to zero, and so must be the factors of ẋ2 and ẋ. Thus, the 
following parametric functions are obtained: 

η = ψ +
1
2
ξ̇x, (7)  

F = ψ̇x+
1
4
ξ̈x2 + χ. (8)  

In these expressions, χ(t) and ψ(t) are unknown functions. Substituting 
these new functions into (6), the following equation is readily reached: 
[

−
1

n + 1
ȧn(t)ξ −

n + 3
2(n + 1)

an(t)ξ̇
]

xn+1 − an(t)ψ(t)xn +

[

−
1
2
ȧ1(t)ξ − a1(t)ξ̇

−
1
4
ξ̇
]

x2 + x
[

3
2
ξ̇f (t) + ḟ (t)ξ − ψ̇(t) − a1(t)ψ(t)

]

− [χ̇(t) − f (t)ψ(t)]

= 0.
(9)  

The coefficient of xn and the last bracket of 9 indicate that ψ = 0, and 
that there exists a constant C ∈ R with the property that χ = C. In this 
work, we assume that C = 0 and ξ(t) = ρ2. The other coefficients of 9 
satisfy the conditions 

an(t) =
Cn

ρn+3, f (t) =
Cf

ρ3 , ρ̈+ a1(t)ρ =
K
ρ3, (10)  

where Cn,Cf and K are real numbers. Notice that the Milne-Pinney 
equation [27,28] is obtained from the last condition of 10. Substitut-
ing all these expressions into (1) shows that 

I =
1
2
(ρ̇(t)x − ρ(t)ẋ)2

+
1

1 + n
an(t)ρ2xn+1 − f (t)ρ2(t)x+

K
2

[x
ρ

]2
, forn

∕= − 1. (11)  

Finally, differentiating directly confirms that (11) is indeed an integral 
of motion. 

If we perform the same procedure for the Case n = − 1, then we 
reach the integral of motion 

I =
1
2
(ρ̇(t)x − ẋρ(t))2

+C− 1ln
⃒
⃒
⃒
x
ρ

⃒
⃒
⃒ − f (t)xρ2(t)+

K
2

[x
ρ

]2
, (12)  

where C− 1 ∈ R is an arbitrary constant, whereas a− 1(t), ρ(t) and f(t)
satisfy the same conditions (10). However, notice that if we consider an 
oscillator of the form 

d2x
dt2 + a1(t)x+

∑n

i=− mi∕=1
ai(t)xi = f (t), (13)  

and if we apply the previous results, then we reach the integral of motion 

I=
1
2
(ρ(t)ẋ− ρ̇(t)x)2

+
∑n

i=− mi∕=− 1,1

1
i+1

ai(t)ρ2xi+1+C− 1ln
⃒
⃒
⃒
x
ρ

⃒
⃒
⃒− f (t)ρ2(t)x+

K
2

[x
ρ

]2
,

(14)  

where the functions ai(t) satisfy the conditions (10). 
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2.2. Damped nth anharmonic oscillator 

Let us consider the damped nth anharmonic oscillator governed by 

d2x
dt2 + b(t)

dx
dt

+ a1(t)x+
∑n

i=− mi∕=1
ai(t)xi = f (t). (15)  

To derive the integral of motion associated with the damped nth anhar-
monic oscillator (15), the following transformation is used (see [18]): 

y(t) = exp
(∫ tb(t)

2
dt
)

x(t). (16)  

As a consequence, the resulting equation of motion is given by 

ÿ+
(

−
1
4
b2(t) −

1
2

ḃ(t) + a1(t)
)

y+
∑n

i=− mi∕=1

⎛

⎜
⎝ai(t)e

1− i
2

∫ t
b(t)dt

⎞

⎟
⎠yi

= f (t)e
1
2

∫ t
b(t)dt

. (17)  

Using the transformation 16, the Eq. (17) assumes the form of an un-
damped equation of motion like (13). Thus, the associated integral takes 
the form 

Iy =
1
2
(
ρyẏ − ρ̇yy

)2
+

∑n

i=− mi∕=− 1,1

1
i + 1

aiyρ2
yyi+1 +C− 1yln

⃒
⃒
⃒
⃒

y
ρy

⃒
⃒
⃒
⃒ − fyρ2

yy+
Ky

2

[
y
ρy

]2

,

(18)  

where 

aiy(t) = ai(t)e
1− i

2

∫ t
b(t)dt

, (19)  

fy(t) = f (t)e
1
2

∫ t
b(t)dt

. (20)  

In this case, the restrictions for the real numbers Ciy,Cfy and Ky are 

aiy(t) =
Ciy

ρi+3
y

, fy(t) =
Cfy

ρ3
y
, ρ̇y +

(

a1(t) −
1
4
b2(t) −

1
2

ḃ(t)
)

ρy =
Ky

ρ3
y
.

(21)  

Using the solutions and parameters of the model (15), we can rewrite 
(18) in the following way: 

Iy = e
∫ t

b(t)dt

⎡

⎢
⎢
⎢
⎣

1
2

(

ρyẋ − ρ̇yx +
1
2

b(t)ρyx
)2

+
∑n

i=− mi∕=− 1,1

1
i + 1

ai(t)ρ2
yxi+1

+ a− 1(t)ρ2
y ln

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

xe
1
2

∫ t
b(t)dt

ρy

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

− f (t)ρ2
yx +

Ky

2

[
x
ρy

]2

⎤

⎥
⎥
⎥
⎦
. (22)  

Again, it can be proved that (22) is an integral of motion by directly 
differentiating. 

3. Numerical implementation 

Some computer experiments are presented now to evaluate the val-
idity of the results in the previous section. To that end, we will require 
that the conditions (10) and (21) be satisfied. As mentioned above, these 
conditions are directly related to the Milne-Pinney equation, which is a 
model for which there are exact solutions available (see [29]). More 
precisely, in the ordinary differential equation 

d2z
dt2 +Q2(t)z = 0, (23)  

the coefficient Q2(t) corresponds to a1 for the conditions of the Milne- 
Pinney model associated with our motion integral of undamped sys-
tem (10). In the Case of the damped oscillator (21), that coefficient 
corresponds to the coefficient of ρy. In the following experiments, the 
initial conditions will be x(0) = ρ(0) = 1 and zero initial velocities. We 
will consider the next cases in our examples below (similar examples 
were considered in [20,30]):  

• Case 1 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t) =
1
4
,

ρ̇ +
1
16

ρ =
1
ρ3,

ρ(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 15sin2
( t

4

)√

.

• Case 2 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t) =
1
4

sint,

ρ̇ +
1
16

sin2(t)ρ =
1
ρ3,

ρ(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⎛

⎜
⎜
⎝

C
(

1
32,

1
64 ; t

)

C
(

1
32,

1
64 ; 0

)

⎞

⎟
⎟
⎠

2

+

⎛

⎜
⎜
⎝

S
(

1
32,

1
64 ; t

)

Ṡ
(

1
32,

1
64 ; 0

)

⎞

⎟
⎟
⎠

2
√
√
√
√
√
√
√
√

.

Here, C
(

1
32,

1
64 ; 0

)

≈ 0.9919 and Ṡ
(

1
32,

1
64 ; 0

)

≈ 0.1785, where S and C 

denote, respectively, the well-known Mathieu sine and cosine functions. 

In Case 1, the frequency Q(t) represents the natural frequency, and it 

represents the frequency associated to an equation of the Mathieu-type 

in Case 2. For the remainder of this section, we will use these solutions to 

approximate computationally the solutions of the equations of motion 

and their associated integrals of motion through a fourth-order Runge- 

Kutta scheme. 

Example 1. (Model with x− 1 and without damping) Fix the constraints 
(10) with C− 1 = 1

16,Cf = 1 and K = 1. The corresponding solutions for 
the Milne-Pinney model are the following:  

• Case 1 

⎧
⎪⎪⎨

⎪⎪⎩

Q(t)=
1
4
,

ρ− 3 = ẍ+
1
16

x+
1
16

ρ− 2x− 1.

• Case 2 

⎧
⎪⎪⎨

⎪⎪⎩

Q(t) =
1
4

sin(t),

ρ− 3 = ẋ +
1
16

sin2(t)x +
1

16ρ2x
.

The graphs on the left of Fig. 1 provide approximations to the solutions 
of the anharmonic oscillator 4 with n = − 1 and without damping. 
Meanwhile, the graphs on the right depict the associated integrals. These 
graphs confirm that the corresponding integrals of motion remains 
constant over time. 

Example 2. (Model with x− 1 and damping) In this case, we will 
employ the set of constraints (21) with parameters C− 1y = 1

16,Cfy = 1,
Ky = 1 and b(t) = 1

16.  

• Case 1 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q(t) =
1
4
,

e− t
32ρ− 3

y = ẍ +
1
16

ẋ +
65

1024
x +

1
16

e− t
16ρ− 2

y x− 1.
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• Case 2 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(t)=
1
4

sin(t),

e− t
32ρ− 3

y = ẍ+
1
16

ẋ+
1
16

[
1
64

+ sin2(t)
]

x+
1
16

e− t
16ρ− 2

y x− 1.

Fig. 2 illustrates the results associated with the damped x− 1 model and 
the respectC− 2 = C− 1 = C3 = C5 = 1

16,Cf = 1,K = 1ive integral. The 
results confirm that these quantities are temporally invariant. 

Example 3. (Model with x− 2 and without damping) We employ the 
constraints (10), letting C− 2 = 1

16,Cf = 1 and K = 1. Under those cir-
cumstances, we obtain:  

• Case 1 

⎧
⎪⎪⎨

⎪⎪⎩

Q(t)=
1
4
,

ρ− 3 = ẍ+
1
16

x+
1
16

ρ− 1x− 2.

Fig. 1. Undamped x− 1 anharmonic oscillator solution (left) and its correspondence integral of motion (right). In these simulations, we have employed the functions 
Q(t) = 1

4 (top), Q(t) = 1
4 sint (bottom). We considered two cases in these simulations, namely, Case 1 (top row) and Case 2 (bottom row), using the constraints (10) 

with C− 1 = 1
16,Cf = 1 and K = 1. The initial data are x(0) = ρ(0) = 1 and zero initial velocities.. 

Fig. 2. Damped x− 1 anharmonic oscillator solution (left) and the associated integral of motion (right). In these computer experiments, we defined b(t) = 1
16, and let 

Q(t) = 1
4 (top), Q(t) = 1

4 sint (bottom). We considered two cases in these simulations, namely, Case 1 (top row) and Case 2 (bottom row), using the constraints (21) 
with C− 1y = 1

16,Cfy = 1,Ky = 1 and b(t) = 1
16. The initial data are x(0) = ρ(0) = 1 and zero initial velocities.. 
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• Case 2 

⎧
⎪⎪⎨

⎪⎪⎩

Q(t)=
1
4

sin(t),

ρ− 3 = ẍ+
1
16

sin2(t)x+
1
16

ρ− 1x− 2.

The left column of Fig. 3 provides the results corresponding to the model 
4 and the cases considered in this work. Meanwhile, the associated 

integrals of motion appear on the right column. Our findings confirm 
that these physical quantities remain constant over time. 

Example 4. (Damped x− 2 anharmonic oscillator) Let the constraints 
(21) be given by C− 2y = 1

16,Cfy = 1,Ky = 1 and b(t) = 1
16. We have the 

following results under these circumstances: 

Fig. 3. Undamped x− 2 anharmonic oscillator solution (left) and the associated integral of motion (right). In these experiments, we employed Q(t) = 1
4 (top), Q(t) =

1
4 sint (bottom). We considered two cases in these simulations, namely, Case 1 (top row) and Case 2 (bottom row), using the constraints (10) with C− 2 = 1

16,Cf = 1 and 
K = 1. The initial data are x(0) = ρ(0) = 1 and zero initial velocities.. 

Fig. 4. Damped x− 2 anharmonic oscillator solution (left) and the associated integral of motion (right). For these computer simulations, we employed b(t) = 1
16 along 

with Q(t) = 1
4 (top), Q(t) = 1

4 sint (bottom). We considered two cases in these simulations, namely, Case 1 (top row) and Case 2 (bottom row), using the constraints 
(21) with C− 2y = 1

16,Cfy = 1,Ky = 1 and b(t) = 1
16. The initial data are x(0) = ρ(0) = 1 and zero initial velocities.. 
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• Case 1 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(t)=
1
4
,

e− t
32ρ− 3

y = ẍ+
1
16

ẋ+
65

1024
x+

1
16

e− 3t
32ρ− 1

y x− 2.

• Case 2 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(t)=
1
4

sin(t),

e− t
32ρ− 3

y = ẍ+
1
16

ẋ+
1
16

[
1
64

+ sin2(t)
]

x+
1
16

e− 3t
32ρ− 1

y x− 2.

Fig. 4 illustrates the results associated with the damped x− 2 anharmonic 
model and the respective integrals of motion. We confirm again that 
these quantities are temporal invariants. 

Example 5. (Multi-anharmonic oscillator without damping) Finally, we 
present a multi-anharmonic oscillator which includes powers − 2, − 1,3 
and 5 of x. Assume that the conditions (10) are satisfied with C− 2 =

C− 1 = C3 = C5 = 1
16,Cf = 1,K = 1. The two cases on the Milne-Pinney 

equation are described by 

Fig. 5. Undamped multi-anharmonic oscillator solution (left) and the associated integral of motion (right). In these computer experiments, we set Q(t) = 1
4 (top) and 

Q(t) = 1
4 sint (bottom). We considered two cases in these simulations, namely, Case 1 (top row) and Case 2 (bottom row), using the constraints (10) with C− 2 =

C− 1 = C3 = C5 = 1
16,Cf = 1,K = 1. The initial data are x(0) = ρ(0) = 1 and zero initial velocities.. 

Fig. 6. Solution of the damped multi-anharmonic oscillator (left) and its associated integral of motion (right). For these simulations, we let b(t) = 1
16, and we used 

Q(t) = 1
4 (top), Q(t) = 1

4 sint (bottom). We considered two cases in these simulations, namely, Case 1 (top row) and Case 2 (bottom row), using the constraints (21) 
with C− 2y = C− 1y = C3y = C5y = 1

16,Cfy = 1,Ky = 1 and b(t) = 1
16. The initial data are x(0) = ρ(0) = 1 and zero initial velocities.. 
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• Case 1 

⎧
⎪⎪⎨

⎪⎪⎩

Q(t)=
1
4
,

ρ− 3=ẍ+
1
16

x+
1
16

ρ− 1x− 2+
1
16

ρ− 2x− 1+
1
16

ρ− 6x3+
1
16

ρ− 8x5.

• Case 2 

⎧
⎪⎪⎨

⎪⎪⎩

Q(t) =
1
4

sin(t),

ρ− 3 = ẍ +
1
16

sin2(t)x +
1
16

ρ− 1x− 2 +
1
16

ρ− 2x− 1+

1
16

ρ− 6x3 +
1
16

ρ− 8x5.

The left column of Fig. 5 provides the approximations to the solutions of 
13 without damping. The associated integrals of motion are presented 
on the right column. We see once more that these quantities are constant 
with respect to time, as expected. 

Example 6. (Multi-anharmonic model with damping) Let us consider 
the constraints (21), assuming now that C− 2y = C− 1y = C3y = C5y = 1

16,

Cfy = 1,Ky = 1 and b(t) = 1
16.  

• Case 1 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(t)=
1
4
,

e− t
32ρ− 3

y =ẍ+
1
16

ẋ+
65

1024
x+

1
16

e− 3t
32ρ− 1

y x− 2+
1
16

e− t
16ρ− 2

y x− 1+

1
16

e t
16ρ− 6

y x3+
1
16

et
8ρ− 8

y x5.

• Case 2 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(t)=
1
4

sin(t),

e− t
32ρ− 3

y =ẍ+
1
16

ẋ+
1
16

[
1
64

+sin2(t)
]

x+
1
16

e− 3t
32ρ− 1

y x− 2+

1
16

e− t
16ρ− 2

y x− 1+
1
16

e t
16ρ− 6

y x3+
1
16

et
8ρ− 8

y x5.

The results of our simulations are provided in Fig. 6, and they confirm 
our theoretical results again. 

In the examples above, we considered various cases in order to 
confirm the theoretical results from Section 2. indeed, we considered 
examples in which damping was present and others in which it was 
absent. We also considered systems in which the forcing considered a 
single anharmonic term, and systems in which various anharmonic 
terms are present. Finally, various power-laws were studied, including 
negative and positive power-laws. In all of them, the numerical exper-
iments showed that the integral of motion was indeed a constant 
quantity associated to all those systems. Obviously, these results 
confirmed the theoretical derivations from Section 2. On the other hand, 
it is important to notice that the quantitative behavior of the integrals of 
motion is strongly dependent on the type of non-linearity. At the same 
time, this qualitative behavior is independent of the expressions of the 
coefficients. Unfortunately, the restrictive nature of the coefficients does 
not allow to analyze a wider variety of cases. This is due to the fact that 
exact solutions are not available in closed form for arbitrary initial data. 
It is worth pointing out that the damping terms clearly fulfill their 
function in each case. All of these experiments serve to emphasize that 
the corresponding value of the integral of motion for each of the cases 
considered is determined by the initial conditions of the problem. The 
simulations considered in this work show that, independently of the 

degree of the nonlinearity and the presence of constant or non-constant 
coefficients, the integrals of motion derived in this work do not depend 
on time. 

4. Conclusion 

In the present work, we obtained physical quantities for general 
forced nth power anharmonic oscillators with damping term. The 
physical system under study considers time-dependent coefficients. 
These physical quantities are integrals of motion, and their calculation is 
carried out using Noether’s theorem. It is worth pointing out that the 
solutions must satisfy appropriate analytical conditions for the proposed 
quantities to be actual integrals of motion. In turn, these analytical 
conditions are associated to well known physical systems, including the 
Milne-Pinney and Ermakov-Lewis models. We provide sufficient nu-
merical solutions of our equations of motion and the associated integrals 
of motion to verify the theoretical results. As a follow-up of this work, 
various interesting applications are expected within the field of 
nonlinear analysis and its applications. As an example, the authors are 
interested in the investigation of nonlinear phenomena (like the 
nonlinear processes of supratransmission, infratransmission and bist-
ability of energy) in systems of anharmonic oscillators with time- 
dependent coefficients. This phenomenon consists in the sudden in-
crease in the amplitude of transmitted wave signals in nonlinear sys-
tems. It has been investigated in models with constant coefficients 
[4,31], though it has never been investigated in systems with time- 
varying parameters. 
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