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ABSTRACT
We present the green synthesis of selenium nanoparticles using onion and ginger extracts and
their characterization. Subsequently, the antimicrobial effect of the nanoparticles against
Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella paratyphi was
tested. Furthermore, this study implemented an in silico analysis using the STITCH database to
generate protein-selenium interaction networks and predict altered KEGG pathways in the studied
bacteria. The results showed the maximum UV-visible absorbance at approximately 550nm con-
firming the synthesis of nanoparticles. Furthermore, the phenolic compounds identified to
enhance the synthesis and stabilize selenium nanoparticles. The synthesized nanoparticles are
spherical at about 100nm. Selenium nanoparticles showed only an inhibitory effect on the growth
of Staphylococcus aureus. According to in silico analysis, nanoparticles cause an inhibition of the
growth of Staphylococcus aureus by an alteration in the metabolism of cysteine, methionine and
arachidonic acid.
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1. Introduction

Currently, the use of nanoparticles has innovated and trans-
formed different scientific disciplines such as the food
industry, medicine and biotechnology (Chenthamara et al.
2019; Mart�ınez-Esquivias et al. 2021b). Nanoparticles can be
synthesized using various precursors and methods such as
sol-gel, hydrothermal, and chemical deposition (Yang and
Park 2019; Jadoun et al. 2021). However, these methods use
dangerous chemical substances including reducing agents,
organic solvents and stabilizing agents that could generate
undesirable effects including toxicity and carcinogenicity,
limiting their medical applications, in addition to generating
toxic environmental effects (D. Zhang et al. 2020).

On the other hand, the green approach involves the use
of protective, stabilizing and reducing agents obtained from
natural sources, such as leaf, crop or fruit extracts. The com-
ponents present in the extracts participate in the formation
of nanoparticles, provide stabilization and increase the
degree of bioavailability and biocompatibility (Khandel et al.
2018). Current studies have compared the effects of selen-
ium nanoparticles (SeNPs) synthesized using green synthesis
methods versus chemical synthesis (Anu et al. 2017;
Wadhwani et al. 2017). According to Anu et al. (2017)
SeNPs synthesized using aqueous extract of garlic generated
less cytotoxicity in an in vitro study using Vero cells com-
pared to nanoparticles synthesized by chemical synthesis
method. Similarly, Wadhwani et al. (2017) compared the

anticancer effect of selenium nanoparticles synthesized by a
green approach versus chemical synthesis. The results
showed that the chemically synthesized nanoparticles exerted
a better anticancer effect but were more toxic to non-
cancerous cell lines, limiting their therapeutic application.

Phytochemicals such as terpenoids, alkaloids, phenolic
compounds, flavonoids, tannins, and biomolecules such as
proteins, carbohydrates, enzymes, and nucleic acids predom-
inate in the liquid extracts of plants, leaves, or fruits
(Makarov et al. 2014; Hussain et al. 2016). Research has
indicated that the presence of proteins, phenolic compounds,
flavonoids, or carbohydrates performs the formation of sel-
enium nanoparticles (SeNPs) by reducing SeO3

�2 of the pre-
cursor salt sodium selenite (Na2SeO3) for the formation of
metallic/elemental selenium (Se�). In addition, these compo-
nents can adhere to the surface of the SeNPs to provide sta-
bilization and prevent aggregation states (Husen and Siddiqi
2014; W. Zhang et al. 2018; Shi et al. 2021; Zambonino
et al. 2021). The obtained nanoparticles are spherical and
their size depends on the extract composition (Akhtar,
Panwar, and Yun 2013; Korde et al. 2020). Various interest-
ing studies report that the SeNPs exhibit anticancer
(Mart�ınez-Esquivias et al. 2022), antioxidant (Kumar et al.
2020), antidiabetic (Mart�ınez-Esquivias et al. 2021a), and
antimicrobial (Mart�ınez-Esquivias et al. 2021a) properties. In
the latter respect, in vitro studies using SeNPs against gram-
negative and gram-positive bacteria employing the agar
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diffusion method were reported (Shoeibi and Mashreghi
2017; Fardsadegh et al. 2019; Salem et al. 2021).

Alternatively, STITCH is a database that offers us infor-
mation on the interactions that may exist between different
elements or chemical compounds in a protein network to
predict the biological processes that may be affected in dif-
ferent organisms, including bacteria (Szklarczyk et al. 2016).
Current reports have been carried out in silico studies using
this database in order to integrate the information obtained
experimentally. Verma et al. (2018) have performed an inte-
grative analysis with this database to assess the potential
toxicological effect of TiO2 nanoparticles. Likewise, Cardozo
et al. (2019) performed an integrative analysis using this
database to elucidate the genotoxic effect of ZnO nanopar-
ticles. Similarly, Kumari et al. (2017) evaluated the potential
cytotoxic effect of CuO nanoparticles. However, to date,
there are no studies that integrate the antimicrobial effect of
SeNPs using this database.

The synthesis of SeNPs in presence of onion or ginger
extracts is reported in the present study. The antibacterial
activity of these nanoparticles against Staphylococcus aureus,
Listeria monocytogenes, Escherichia coli, and Salmonella par-
atyphi was evaluated. To our knowledge, the use of onion
extract in the synthesis of SeNPs has not been previously
reported. Additionally, we performed an in-silico analysis
through the STITCH database to learn about the KEGG
pathways that could be affected by exposure to SeNPs on
the bacteria under study.

2. Materials and methods

2.1. Extraction

Fresh onions and ginger, purchased from a local market,
were peeled and washed first. 125 g of onion or ginger and
0.5 L of deionized water were added in a mixer. The
obtained mixture was placed in 50mL test tubes and then
centrifuged at 4,500 rpm for 20min. The obtained super-
natant was filtered in a vacuum filtration system, the onion
and ginger solutions were stored separately and it was ready
for characterization by HPLC. Filtered extracts were stored
at �4 �C for 24 h before being used for nanopar-
ticle synthesis.

2.2. Extract characterization

For the identification of phenolic compounds, extract ali-
quots obtained from onions and gingers were analyzed by a
HPLC equipment (Agilent 1200 Series HPLC System,
Agilent Technologies, Santa Clara, CA, USA). The system is
equipped with a matrix detector G4212-60008 UV-Vis
Diode (DAD) module and coupled with an Agilent 6120
single quadrupole LC/MS, equipped with electrospray ion-
ization with negative ionization mode interface (N2 as dry-
ing gas flow, 13.0 L/min; nebulizer pressure, 40 psi; gas
drying temp. 350C; capillary voltage, 3,500V). 10 mL of
anion or ginger extract was first filtered using a 0.45mm
nylon membrane (Merck Millipore Ltd., Cork, Ireland), and

then automatically injected at 0.4mL/min into a Agilent
Poroshell 120 EC-C18 column (4.6mm � 150mm, 2.7 mm).
The elution gradient was carried out with water containing
0.1% formic acid (Sigma-Aldrich) as a solvent A and aceto-
nitrile (Sigma-Aldrich) as a solvent B, under the following
sequence: 0min, 5% B; 10min, 23% B; 15min, 50% B;
20min, 50% B; 23–25min, 100% B; 27min, 5% B; 30min,
55 B (C�ardenas-Castro et al. 2020).

2.3. Synthesis of SeNPs

Hundredmilliliters of the onion or ginger extract and 10 g
of Na2SeO3 were placed in a beaker under stirring at 60 �C,
260 rpm for 3, 6 or 12 h. The color of the solution changed
to red during the synthesis. After the synthesis time, a por-
tion of the solution was placed in a quartz cuvette for UV-
Vis analysis. The rest of the solution was placed in tubes of
2mL and centrifuged at 13,000 rpm and 4 �C to remove the
supernatant (extract). Successively, particles were washed
tenfold with deionized water and threefold with absolute
ethyl alcohol. The tubes were then dried at ambient tem-
perature for 48 h. Finally, the samples (SeNPs) were ground
in an agate mortar, and the powder obtained was used for
characterization (Figure 1).

2.4. Characterization of SeNPs

Absorbance spectra were obtained in a UV-Vis spectropho-
tometer (Shimadzu UV-2600, Tokyo, Japan). The morph-
ology of the SeNPs was determined by scanning electron
microscopy (SEM), (Tescan MIRA3 LMU, London, the UK
at 20 kV). Additional features of the nanoparticles were
determined by transmission electron microscopy (TEM)
(JOEL JEM 1010 with an acceleration voltage of 100 kV).
The X-ray diffraction (XRD) patterns were obtained in a
Empyrean Diffractometer, Malvern Panalytical, Almelo, the
Netherland, equipped with Cu Ka radiation (k¼ 0.154 nm)
in a range of 10–90� 2h and 4 s/step. ATR-FTIR spectros-
copy (Nicolet iS5, ThermoFisher Scientific, Tokyo, Japan)
was also used for characterization. The spectra were
acquired in a range of 400–4,000 cm�1 with 24 scans per
spectrum and a resolution of 4 cm�1.

2.5. Antibacterial activity of SeNPs

Based on a previous report on the antibacterial activity of
SeNPs (Shoeibi and Mashreghi 2017), our nanoparticles
were evaluated against Staphylococcus aureus (ATCC 33862),
Listeria monocytogenes (ATCC 15313), Escherichia coli
(ATCC 8739), and Salmonella paratyphi (ATCC 9150) by
the disk diffusion method. Bacteria of 108 CFU/mL were
uniformly spread cultivated in Petri dishes provided with a
Muller Hinton agar medium. Subsequently, sterile paper
disks of 6mm in diameter, previously impregnated with
nanoparticles (25, 50, and 100mg/mL) were placed on the
agar plate. Additionally, sterile paper disks were impreg-
nated with the onion or ginger extract. Disks of Gentamicin
(10 mg) were used as the positive control (Cþ), and disks
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impregnated with sterile double distilled water as the nega-
tive control (C-). All plates were incubated at 37 �C for 24 h.
The antimicrobial activity was determined by measuring the
zone of inhibition around the disk in millimeters. All experi-
ments were performed in triplicate.

2.6. In silico analysis

For the in silico analysis, we worked on the STITCH data-
base (http://stitch.embl.de/) to generate interaction networks
between selenium and proteins for each of the bacteria
studied. Additionally, possible KEEG pathways affected by
selenium exposure were predicted (Szklarczyk et al. 2016).
For protein-selenium interaction networks, a minimum
interaction score of 0.400 was considered with no more than
10 interactions shown. For the KEGG analysis, a False
Discovery Rate (FDR) < 0.05 was considered.

2.7. Statistical analysis

The bacterial inhibition was expressed as the mean ± the
standard deviation (SD). The statistical significance between
groups was determined by the Kruskal–Wallis analysis, fol-
lowing the Post-Hoc testing.

3. Results and discussion

3.1. Extract characterization

Quercetin and gingerols reported in Table 1 were the phen-
olic compounds identified by HPLC-DAD-MS in onion and
ginger extracts, respectively. These findings have also been
recorded by Cecchi et al. (2020) and Asamenew et al.
(2019). The phenolic compounds participate as reducing and
stabilizing agents during the synthesis of SeNPs. In addition,
they prevent aggregation of particles and impart antioxidant
properties (Mellinas, Jim�enez, and Garrig�os 2019).

Figure 1. Preparation of extracts and synthesis of SeNPs.

Table 1. Phenolic compounds present in onion and ginger extracts identified
by HPLC-DAD-MS.

Compound Rt m/z [-]

Onion extract
Quercetin 17.53 301

Ginger extract
5-Acetoxy1,7-bis (4-hydroxy-3-methoxyphenyl) heptan-3-one 18.71 357.21
6-Gingerdiol 11.213 261.21
6-Gingerol 4.01 277.21
10-Gingerol 22.731 333.28
Acetoxy-10-gingerol 23.486 333.28
5,7,30 ,40-Tetramethoxyflavone 16.6 381.07
3,5,7,30 ,40-Pentamethoxyflavone 20.50 411.09
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3.2. Synthesis of SeNPs

During the synthesis of particles, the color of the extract sol-
utions changed from colorless (onion) and yellow (ginger)
to dark red (Figure 2). This change in color is related to the
formation of SeNPs (Husen and Siddiqi 2014) and resulted
from the reduction of selenium ions to Se� in presence of
phenolic compounds (Hussain et al. 2016). Figure 3 Show
possible mechanism of SeNPs synthesis in the presence of
phenolic compounds.

3.3. Characterization of SeNPs

The formation of SeNPs was also confirmed using UV-vis
spectroscopy between 400 and 800 nm (Figure 4). The
absorbance detected at about 550 nm is indicative of the sur-
face plasmon resonance (SPR) band. Similar absorbance
references were taken by other authors for the formation of
SeNPs in the presence of Pseudomonas aeruginosa (Kora

and Rastogi 2016), Trichoderma sp (Diko et al. 2020), and
Magnusiomyces ingens (Lian et al. 2019). Our results indicate
that the phenolic compounds present in the natural extracts
from onion and ginger act as reducing agents and could be
a viable alternative for the synthesis of SeNPs. In addition, it
can be seen that there are differences between the absorp-
tion spectra of the SeNPs synthesized using onion and gin-
ger extract. These differences can be explained based on the
atomic structure of the synthesized SeNPs (Kora and
Rastogi 2016).

SEM analysis showed a spherical morphology of the syn-
thesized SeNPs (Figure 5). For its part, the TEM analysis
showed nanoparticles with a diameter of approximately
90 nm, except those synthesized in the presence of onion
extract at 12 h, which are approximately 114 nm (Figure 6).
These results are in agreement with previous reports regard-
ing SeNPs synthesized with ginger extract. Menon et al.
(2019) reported particle sizes from 100 to 150 nm, whereas
Zahran, Elsonbaty, and Moawed (2017) obtained particles in

Figure 2. Color changes of onion (A) and ginger (B) extracts.

Figure 3. Proposed mechanism of SeNPs synthesis.
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Figure 4. UV-Vis absorbance spectra of SeNPs synthesized in presence of onion (A) and ginger (B) extracts.

Figure 5. SEM images of SeNPs synthetized in presence of onion (A) and ginger (B) extracts.

Figure 6. TEM images of SeNPs synthetized in presence of onion (A) and ginger (B) extracts.
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the range of 10–30 nm. In addition, Mulla et al. (2020),
Liang et al. (2020), W. Zhang et al. (2018), and Anu et al.
(2017) have also studied the synthesis of SeNPs in the pres-
ence of Azadirechta indica, Oscimum tenuiflorum, a polysac-
charide from Lycium barbarum and Allium sativum, and
reported particle sizes of 153–278, 15–20, 83–160, and
40–110 nm, respectively. These variations are due to differ-
ences in the precursors and synthesis conditions (Akhtar,
Panwar, and Yun 2013).

The XRD patterns of the SeNPs synthesized using onion
extract (Figure 7(A)) show broad diffraction signals, which
are indicative of amorphous structures. The diffractions are
assigned to the trigonal phase of selenium, with a¼ 4.362A�

and c¼ 4.958A� according to the JCPDS, file No. 06-362.
Amorphous structures related to SeNPs have also been
reported (Chen et al. 2009; Alagesan and Venugopal 2019).
On the other hand, the SeNPs synthesized using ginger
extract (Figure 7(B)) show sharp peaks at 2h values at 20�

and 30� approximately, which suggests a crystalline structure
according to file No. 06-362, which is consistent with what
has been reported by Wadhwani et al. (2017). However,
other characteristic peaks of the crystalline structures are
not appreciated due to the noise generated by the organic
compounds present in the synthesized SeNPs (Vikneshan
et al. 2020).

The FTIR spectra as function of extract and synthesis
time are shown in Figure 8. The FTIR spectra of the nano-
particles synthesized from the onion extract (Figure 8(A))
show peak at 965 cm�1 is assigned to carbohydrate func-
tional groups, and those at about 2,979, 2,346, 1,636 and
1,145 cm�1 to methylene CH asym/sym stretching band,
C¼N¼O asymmetric stretching, and the latter two to the
amide groups I, respectively. The functional signals result

from lipids, proteins, carbohydrates, and polyphenols pre-
sent in the extracts. In addition, the absorption peaks 2,933,
2,346 and 1,636 cm�1 become narrower, their intensity
decreases and they move to low frequency regions according
to the synthesis time, these structural changes are due to the
fact that these functional groups participate in the reduction
and stabilization of nanoparticles Abboud et al. (2013).
Figure 8(B) also shows the FTIR spectra of the SeNPs syn-
thesized in presence ginger extract. Similarly, the signals at
about 2,984 and 2,882 cm�1 are attributed to methylene CH
asym/sym stretching mode, that at about 2,324 cm�1 to
C¼N¼O asymmetric stretch, those at 1,658, 1,269, 1,030
and 738 cm�1 to the vibrations of the amide group I, the
skeleton C-C, the stretching of the CN group of the primary
amines and to the torsional CH deformation of the polysac-
charide ring, respectively.

The changes in the absorption of the resulted species
observed in the FTIR spectra are a clear indication of the
oxidation-reduction reactions occurring throughout the syn-
thesis process. In addition, it demonstrates that onion and
ginger extracts are suitable for the synthesis of SeNPs
(Zahran, Elsonbaty, and Moawed 2017; Menon et al. 2019).

3.4. Antibacterial activity

Figure 9 shows the zones of inhibition against
Staphylococcus aureus. Our results indicate that SeNPs
decreased the growth of Staphylococcus aureus, showing an
insignificant dose-dependent effect when the Kruskal-Wallis
test was applied (Figure 10). It is worth commenting that
the extracts alone did not show any antimicrobial activity
and as a consequence, the activity was only attributed to the

Figure 7. XRD spectra of SeNPs synthetized in presence of onion (A) and ginger (B) extracts.
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presence of the SeNPs. Other studies have reported similar
effects. SeNPs showed activity against Staphylococcus aureus
and resistance to the growth of Bacillus subtilis, Escherichia
coli, and Pseudomonas aeruginosa (Shoeibi and Mashreghi
2017). Vahdati and Tohidi Moghadam (2020) found that
SeNPs (35.6 ± 7.5 nm) efficiently reduced the growth of
Staphylococcus aureus (MIC ¼ 82mg/mL) and showed

resistance to the growth of Escherichia coli. Guisbiers et al.
(2016) also reported that SeNPs (115 ± 38 nm) exhibited a
significant greater inhibition effect on the growth of
Staphylococcus aureus than on Escherichia coli. Salem et al.
(2021) reported that the SeNPs synthesized in presence of
Penicillium corylophilum fungus, showed antibacterial activ-
ity against gram-positive and gram-negative bacteria

Figure 8. FTIR spectra of SeNPs synthetized in presence of onion (A) and ginger (B) extracts.

Figure 9. Zones of inhibition of SeNPs synthetized in presence of onion (A) and ginger (B) extracts against Staphylococcus aureus.

Figure 10. Antimicrobial activity of the SeNPs against Staphylococcus aureus.
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(Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and
Pseudomonas aeruginosa). The inhibition halos were 33.3,
23.6, 22.6, and 20mm, respectively, with a 150 mg of nano-
particles/mL. Menon et al. (2019) reported that the SeNPs
synthesized using ginger extract effectively suppressed the
growth of gram-negative bacteria Proteus sp, Serratia sp,
and Escherichia coli at a concentration of 100mg of nanopar-
ticles/mL. The inhibition halos were 20, 17, and 12mm,
respectively. In contrast, the Staphylococcus aureus and
Bacillus subtilis inhibition halos were 7 and 5mm,
respectively.

3.5. In silico analysis

Figure 11 shows the interaction networks between proteins
and selenium that were predicted in the STITCH database
for the bacteria Escherichia coli, Staphylococcus aureus,
Salmonella, and Listeria monocytogenes. Table 2 shows the
KEGG pathways that could be affected by exposure to selen-
ium. According to the results of the in silico analysis of

KEGG pathways (Table 2), selenium could affect the metab-
olism of cysteine, methionine, arachidonic acid and sulfur
for Staphylococcus aureus. However, the pathways in which
selenium is involved in Salmonella are selenocompound
metabolism and aminoacyl-tRNA biosynthesis. Meanwhile,
selenium can affect pathways related to glutathione metabol-
ism and valine, leucine, and isoleucine degradation in
Listeria monocytogenes. For Escherichia coli, the analysis
showed no KEGG pathways that could be affected.

By relating the results of the in vitro to the in silico ana-
lysis, we could infer that the exposure to SeNPs inhibited of
the growth of Staphylococcus aureus due to an alteration in
the metabolism of cysteine and methionine. In the literature,
it has been mentioned that exposure to SeNPs generates an
antimicrobial effect on the generation of reactive oxygen
species (ROS) (Mart�ınez-Esquivias et al. 2021a). Both amino
acids can be oxidized by ROS and cause enzyme inhibition
(Gaupp, Ledala, and Somerville 2012). These results are
interesting since methionine metabolism has been
considered a target for drug development against.

Figure 11. Interaction networks of selenium and proteins to Escherichia coli (A), Staphylococcus aureu (B), Salmonella (C), Listeria monocytogenes (D). Stronger associ-
ations are represented by thicker lines. Protein-protein interactions are shown in gray, chemical-protein interactions in green and interactions between chemicals
in red.

Table 2. KEGG enrichment pathways deregulated by selenium exposure.

#Pathway ID Pathway description FDR Molecules involved in the metabolic pathway

Staphylococcus aureus
270 Cysteine and methionine metabolism 0.00309 SACOL0502, cysK, sbnA
590 Arachidonic acid metabolism 0.00309 bsaA, gpxA2
1120 Microbial metabolism in diverse environments 0.00309 SACOL0502 ,cysK,kat,lpdA,sbnA
480 Glutathione metabolism 0.00818 bsaA, gpxA2
920 Sulfur metabolism 0.0112 cysK, sbnA

Salmonella
450 Selenocompound metabolism 7.55E-09 STY4785, metB, selA, selD, sufS
970 Aminoacyl-tRNA biosynthesis 0.00145 STY4785, cysS, selA

Listeria monocytogenes
480 Glutathione metabolism 0.00011 lmo0906, lmo0983,lmo1433
20 Citrate cycle (TCA cycle) 0.0166 PdhD, lmo1371
280 Valine, leucine and isoleucine degradation 0.0166 PdhD, lmo1371
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Staphylococcus aureus (Schoenfelder et al. 2013). On the
other hand, an alteration in the metabolism of arachidonic
acid could generate a toxic effect on Staphylococcus aureus
due to a lipid peroxidation mechanism. This route has also
been suggested for developing of new agents against
Staphylococcus aureus (Beavers et al. 2019).

However, the exposure of SeNPs did not show inhibition
in the growth of Salmonella paratyphi and Listeria
monocytogenes, so we could not relate the in vitro analysis
with the in silico analysis. However, the biosynthesis of ami-
noacyl-tRNA and the citrate cycle are considered targets to
produce an antimicrobial effect that should be studied in
greater depth in future works (Mart�ınez and Rojo 2011;
Chopra and Reader 2014). Additionally, we must emphasize
that the results obtained from the in silico analysis should
be experimentally corroborated in future work.

3.5.1. Perspectives
Future works will evaluate the antioxidant effect and the cel-
lular cytotoxicity of the synthesized SeNPs.

4. Conclusions

Green synthesis of selenium nanoparticles using onion and
ginger extracts and their characterization is herein reported.
In addition, their antimicrobial effect against Staphylococcus
aureus, Listeria monocytogenes, Escherichia coli, and
Salmonella paratyphi was evaluated. Our results indicate that
the natural compounds present in the extracts were capable
to reduce the SeO3

�2 species to form metallic selenium
nanoparticles. The selenium nanoparticles are spherical of
about 100 nm in diameter. The microbial inhibition test
showed activity against Staphylococcus aureus and resistance
against Escherichia coli, Salmonella paratyphi, and Listeria
monocytogenes for all SeNPs. The advantages of using these
extracts compared to the methods that use ascorbic acid as a
reducing agent are that the extracts provide us with natural
components that act as reducing agents for the formation of
SeNPs, in addition, to providing stabilization and avoiding
states of aggregation. In contrast, methods using ascorbic
acid only provide a reducing environment for the synthesis
of nanoparticles but it is necessary to add a stabilizing agent.
In addition, we must mention that although the SeNPs did
not present potent antibacterial activity, they could be func-
tionalized with antimicrobial substances to improve their
activity in future works. Finally, we relate the results of the
in vitro with the in silico analysis in which we were able to
attribute that the inhibition in the growth of Staphylococcus
aureus is due to an alteration in the metabolism of cysteine,
methionine and arachidonic acid, considered targets for
developing of agents against Staphylococcus aureus.
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