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Abstract: This paper reports the results of the PLGA–TiO2 nanocomposite regarding the green synthe-
sis of titanium dioxide nanoparticles using a natural extract, its characterization, and encapsulation
with poly(lactic-co-glycolic acid) (PLGA). UV–visible spectrometry was used for the identification of
terpenes present in the extracts. The morphology of the nanoparticles was determined by scanning
electron microscopy. Infrared spectroscopy was used for the determination of functional groups,
while X-ray diffraction was used to determine the crystal structure. The analysis of the extended
release of the encapsulated extract in the matrix of the nanomaterial resulted in a maximum visible UV
absorbance at approximately 260 nm and confirmed the synthesis of titanium dioxide nanoparticles.
Moreover, terpenes enhance synthesis and stabilize titanium dioxide nanoparticles. The synthesized
structures are spherical and amorphous, 44 nm in size, and encapsulated at 65 nm.

Keywords: TiO2 nanoparticles; PLGA; drug delivery; functionalization; biomaterials

1. Introduction

Biomedical applications of nanomaterials have received considerable attention from
researchers [1]. Titanium dioxide (TiO2) has been used mainly for water treatment specif-
ically by advanced oxidation processes and as an antibacterial agent [2]. TiO2 consists
of three phases: anatase, rutile, and brookite [3]. The anatase phase is the most active
in photocatalysis [4–6]. Recently, we have sought to synthesize TiO2 nanoparticles that
produce mesoporous spheres with hydrophobic properties, which can be used in medicine
and pharmacology [7,8]. On the other hand, polymers have played an important role in
conventional pharmaceutical formulations; these are used as pharmacological agents [9].
Among the most commonly used is poly(lactide-co-glycolide) (PLGA), mainly to control the
release of the drug [10]. One of the ways to improve both the physical characteristics and
the biological properties of nanomaterials is the development of polymer nanomaterials as
nanocomposites, making use of biocompatible materials such as PLGA [11,12].

The incorporation of nanoparticles such as TiO2 within a polymer matrix improves its
physical properties because the intertwining of the networks at the molecular level cannot
be separated unless the chemical bonds are broken [13]. In addition, the morphology of
this polymeric network generates a synergy with the initial components and allows for
controlled releases [9]. TiO2 is low-cost and non-toxic [14] in addition to being approved by
the US Food and Drug Administration (FDA) for the food industry and the medical field
(except in the European territory) [15]. This places it as a nanomaterial used for biomedical
applications, specifically for drug release [16].
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In the present work, a nanocomposite (PLGA–TiO2) based on TiO2 nanoparticles (TiO2
NP) synthesized by green chemistry and functionalized with a natural extract, encapsulated
with PLGA, is studied. Using scanning electron microscopy (SEM), infrared (FT-IR) and
ultraviolet-visible spectroscopy (UV–Vis), physisorption analysis, and X-ray diffraction
(XRD), the physicochemical properties of the nanocomposite material were characterized
and the release time was studied.

2. Results and Discussion
2.1. SEM Analysis

The micrographs obtained by SEM demonstrate the morphology of the synthesized
nanomaterial. Figure 1a, belonging to the TiO2 NPs, presents nano agglomerates and
spherical morphologies (shown in the image) characteristic of TiO2 [12]. Using Image J
software, it was determined that the spheres present in the sample have an approximate size
of 44 nm. These spheres cluster together to form clusters that are encapsulated by the PLGA
polymer matrix shown in Figure 1b. This polymer layer prevents us from seeing the exact
morphology of the material it contains; however, it is observable that the nanocomposite
was encapsulated.
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Figure 1. Micrographs of nanoparticles. ((a): TiO2 NP, (b): PLGA-TiO2).

2.2. XRD Analysis

TiO2 in the anatase phase was selected as a material to work with due to its high
surface area; having greater surface availability can help obtain a better functionalization of
the nanoparticle [17]. XRD analysis was used to study the structure and phase formation of
the sample. The diffraction spectrum (Figure 2) confirmed the presence of the anatase phase
in our nanomaterial, showing the characteristic peaks of the phase (101, 004, 200) that are in
agreement with the crystallographic chart JCPDS 21-1272 for titanium dioxide in the anatase
phase. The crystallite size and lattice parameters (Table 1) were obtained using Scherrer’s
equation and Bragg’s law, respectively, demonstrating that there are no differences between
the parameters reported for TiO2 [4,12,18], meaning that green synthesis does not modify
the crystallinity and morphology of the material. The diffraction pattern of the PLGA–
TiO2 nanocomposite is mostly amorphous. However, peaks that are similar to those that
correspond with the anatase phase of TiO2 are observed, which indicates the housing of
the nanoparticles in the polymer matrix [19].
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Table 1. Comparison of the crystallinity parameters of titanium dioxide.

Material
Lattice Parameters

Crystallite Size (nm)
a = b (Å) c (Å)

TiO2 3.774 a 9.426 a 11.97 b

TiO2 reported [19] 3.784 9.478 21.6
a Calculated by Bragg’s law. b Obtained by Scherrer equation.

2.3. UV-Vis Analysis

Figure 3 shows the UV–Vis analysis results of the materials. TiO2 reveals good photo-
energetic absorption in the range of 200 to 400 nm, indicating that it can be active with
natural light radiation [7,16]. The spectrum corresponding to PLGA shows absorption
bands at 265 and 338 nm, while the results of the compound PLGA–TiO2 absorbs in the
range of 200 to 400 nm. However, it does not show the marked bands of TiO2 at 324 nm,
which may indicate the encapsulation of the nanoparticles [20].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 9 
 

 

 
Figure 2. X-ray diffraction patterns of pure titanium dioxide (TiO2) and nanocomposite (PLGA–
TiO2). 

Table 1. Comparison of the crystallinity parameters of titanium dioxide. 

Material 
Lattice Parameters 

Crystallite Size (nm) 
a = b (Å) c (Å) 

TiO2 3.774 a 9.426 a 11.97 b 
TiO2 reported [19] 3.784 9.478 21.6 

a Calculated by Bragg’s law. b Obtained by Scherrer equation. 

2.3. UV-Vis Analysis 
Figure 3 shows the UV–Vis analysis results of the materials. TiO2 reveals good photo-

energetic absorption in the range of 200 to 400 nm, indicating that it can be active with 
natural light radiation [7,16]. The spectrum corresponding to PLGA shows absorption 
bands at 265 and 338 nm, while the results of the compound PLGA–TiO2 absorbs in the 
range of 200 to 400 nm. However, it does not show the marked bands of TiO2 at 324 nm, 
which may indicate the encapsulation of the nanoparticles [20]. 

 
Figure 3. UV–Vis spectra of pure titanium dioxide (TiO2), nanocomposite (PLGA–TiO2) and poly 
(lactic-co-glycolic acid) (PLGA). 
Figure 3. UV–Vis spectra of pure titanium dioxide (TiO2), nanocomposite (PLGA–TiO2) and poly
(lactic-co-glycolic acid) (PLGA).



Int. J. Mol. Sci. 2022, 23, 10755 4 of 8

2.4. FT-IR

Figure 4 shows the molecular vibrations of the TiO2 nanoparticles and the PLGA–
TiO2 nanocomposite. The signals corresponding to TiO2 can be observed in the area of
800–400 cm−1, and signals corresponding to -OH (1737 cm−1) in the spectrum of TiO2 and
3305 cm−1 in PLGA–TiO2 are also observed; this signal is accentuated due to the polymer
matrix of the material that encapsulated the extract. In addition, the TiO2 spectrum shows
signals corresponding to the stretching and bending vibrations of -C=O (1531 cm−1) and
-CH3 (1367 cm−1), which agree with what was reported by Serga et al. in 2021 [21]. The
PLGA–TiO2 spectrum demonstrated absorption bands belonging to C=O ester bonds
(1722 cm−1) and C-H (1458 cm−1) corresponding to a deformation of the O-CH2 group
of the PLGA [20]. Furthermore, peaks caused by stretching of C-O (1043 cm−1), -CH3
(2920 cm−1), -CH2 (2856 cm−1) and -OH (3313 cm−1) bonds [22] are shown.
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2.5. Physisorption Analysis

Figure 5 shows a type II isotherm, which are macroporous solids where the formation
of the monolayer predominates. Characterized by the overlap of the monolayer and
multilayer, it presents a type H3 hysteresis in the range of 0.45–0.90 P/P0, indicative of
mesoporosity [23]. The Brunauer–Emmett–Teller (BET) method showed a surface area of
1.4864 m2/g and the Barrett–Joyner–Halenda (BJH) method a pore size of 5.9109 nm; these
determinations allow us to assume that the material has open and oval pores with a non-
uniform shape [24] that can act as containers for the extract with which the functionalization
was performed.

2.6. PLGA–TiO2 Release Profile

The values of drug loading and encapsulation efficiency are summarized in Figure 6.
The PLGA–TiO2 release profile shows a rapid initial release in the first two hours; previously,
the release profile of the PLGA–extract was reported [12]. It can be said that there are
significant differences in encapsulation efficiency (EE) and drug loading (DL) between
extract–PLGA and TiO2–PLGA. These results are consistent with what was reported by
Martin-Camacho et al. who observed that as the amount of extract increased, the DL also
increased [12]. The release profiles of PLGA loaded with TiO2 and extract exhibited a
controlled release with a pattern of rapid initial release followed by a sustained release
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at pH = 7. During the first 15 min, 26.94% of TiO2–PLGA was released, and after 90 to
1440 min 39.79% was released. The initial burst is attributed to the weak bonds of the
TiO2–extract trapped on the surface of the PLGA matrix. While the sustained release is
attributed to the diffusion of TiO2–extract from the internal matrix of the PLGA. The release
profile was analyzed using the add-in program for Microsoft Excel, DDSolver [25]. Based
on the analysis, the model in which the release profile fits is the Weibull model with an R
squared of 0.9855.
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3. Materials and Methods
3.1. Chemical Reagents

The titanium oxide (TiO2) was obtained from titanium butoxide (IV) (C16H36O4Ti,
Sigma Aldrich, St. Louis, MO, USA) and a natural extract (international patent No.PCT/
IB2020/061916). The functionalization of the material required poly(vinyl alcohol) (PVA)
((C4H6O2)n, Sigma Aldrich, St. Louis, MO, USA) poly(D,L-lactide-co-glycolide) (PLGA)
(lactide:glycolide (75:25), Sigma Aldrich, St. Louis, MO, USA) and acetone ((CH3)2CO,
Sigma Aldrich, St. Louis, MO, USA). The releases were made in phosphate-buffered
saline (PBS).

3.2. Nanomaterial Synthesis

TiO2 nanoparticles were synthesized by the sol–gel method [18] with some modifi-
cations, using titanium butoxide as a precursor. An amount of 40 mL of butoxide added
drop by drop was dissolved in 40 mL of extract in a three-mouth flask. The solution was
heated to 80 ◦C for four hours using magnetic stirring. The solution was then cooled to
0 ◦C for 18 h. The gel was then dried at 100 ◦C and calcined at 500 ◦C for 4 h in a static air
atmosphere (heating rate of 2 ◦C/min).

3.3. Nanoparticle Functionalization

The NPs were functionalized following the emulsion solvent evaporation technique,
using 5 mL of a solution composed of PVA (4%), extract (16% w/v), and 5 mg of TiO2 NP,
sonicated 3 min, and homogenized using an Ultra-turrax (IKA, T18; Germany). An amount
of ~5 mg of PLGA (75:25) was added drop by drop and dissolved in 400 µL of acetone.
The samples obtained were kept at −80 ◦C for 2 h and freeze-dried at −50 ◦C (Labconco,
FreeZone 6; Kansas, MO, USA) [12].

3.4. Sample Characterization

The morphology of the materials was observed by scanning electron microscopy
(MIRA 3LMU, Tescan, London, UK) operated at 20 kV.

The absorption spectra of the materials were acquired by a UV–Vis DRS (Shimadzu
UV-2600, Tokyo, Japan) provided with an integration sphere suitable for diffuse reflectance
studies. The UV–Vis DRS spectra were obtained from 190 to 900 nm wavelength.

The X-ray powder diffraction patterns were acquired using an XRD Panalytical
diffractometer (Empyrean, Almelo, The Netherland) equipped with Cu Kα radiation
(λ = 0.154 nm). Data were collected from 10◦ to 90◦ (2θ with a scan rate of 0.02◦/0.2 s. The
average crystal size was determined using the Scherrer Equation (1):

D =
kλ

β cos θ
(1)

where D is the crystal size, k is the form factor (0.89), λ is the wavelength of Cu Kλ radiation,
β is the width evaluated at mid-high of the most intense diffraction peak, and θ is the Bragg
angle. The inter-planar distance (d) can also be evaluated from Bragg’s law (2):

2d sin θ = nλ (2)

The FT-IR spectra for the material was recorded with an FTIR (Shimadzu, IRTracer-
100, Tokyo, Japan) spectrophotometer using attenuated total reflectance (ATR) with a
diamond waveguide (XR model). A detector of fast recovery deuterated triglycine sulfate
(DTGS) (standard) was used for the analysis. The spectra were recorded at room tem-
perature, with 24 scans and 4 cm−1 of resolution and from 4000 cm−1 to 400 cm−1. The
equipment measures interferogram signals that must be decoded. For this, a mathematical
technique called Fourier transform (FT) is used, which generates the change of the inter-
ferogram signals to the frequency domain; this process is carried out by the computer of
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the equipment and at the end, it presents the user with the spectral information obtained
from the analysis [26].

A micromeritics TriStar II Plus (Norcross, GA, USA) was used to determine the specific
surface area of adsorption–desorption isotherms of N2 at 77 K. The BET and BJH methods
were used to calculate the specific surface area and mean diameter of pore, respectively.

3.5. Release Profile of the Extract in PLGA-TiO2

The dialysis method was used, suspending 5.0 mg of NP in 5 mL of buffer at different
pH (1.5 and 7.0) to simulate physiological conditions. The suspension was maintained at
37 ◦C and 150 rpm. Samples were taken at 15, 30, 45, 60, 90, 120, 180, 240, 300, 360, 420,
480, 540, 600, and 1440 min and read on a UV–Vis spectrophotometer (Shimadzu UV-2600,
Tokyo, Japan) at 256 nm. Release kinetics were adjusted to kinetic models to determine
reaction order and release mechanism [13].

3.6. Evaluation of Extract Encapsulation Efficiency

For the evaluation of the extract encapsulation efficiency (EE%) and drug load (DL%),
5 mg of functionalized nanoparticles were placed in 5 mL of buffer phosphates and the
solution was sonicated for 10 min. Subsequently, it was stirred at 37 ◦C for 48 h. Finally,
the solution was centrifuged for 15 min at 3000 rpm, using the supernatant for reading on a
UV–Vis spectrophotometer (Shimadzu UV-2600, Tokyo, Japan) at 276 nm [19]. Drug load
and encapsulation efficiency were determined by the following equations:

EE% =
f ree drug mass

drug used f or synthesis
× 100%

DL% =
f ree drug mass

nanoparticles mass
× 100%

4. Conclusions

The XRD, FTIR, and UV–Vis analyses showed that the green synthesis of the nanocom-
posite (PLGA–TiO2) does not modify the crystallinity of the material, maintaining the
anatase phase, in addition to confirming the inclusion of TiO2 nanoparticles within the
PLGA matrix. SEM, BJH, and BET analyses determined that the material has a spherical
morphology with a surface area of 1.4864 m2/g and an approximate pore size of 5.9 nm.
These results demonstrate the potential of the PLGA–TiO2 nanocomposite for possible
pharmaceutical and nanobiomedical applications due to its stable release. Defining the final
applicability of the nanopolymer studied requires tests such as cell viability, cytotoxicity,
and antibacterial tests that are recommended for future research.
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