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Abstract: Myocardial damage in acute myocardial infarctions (AMI) is primarily the result of
ischemia–reperfusion injury (IRI). Recognizing the timing of transcriptional events and their modula-
tion by cardioprotective strategies is critical to address the pathophysiology of myocardial IRI. Despite
the relevance of pigs for translational studies of AMI, only a few have identified how transcriptomic
changes shape cellular signaling pathways in response to injury. We systematically reviewed tran-
scriptomic studies of myocardial IRI and cardioprotection in Sus scrofa. Gene expression datasets
were analyzed for significantly enriched terms using the Enrichr analysis tool, and statistically signifi-
cant results (adjusted p-values of <0.05) for Signaling Pathways, Transcription Factors, Molecular
Functions, and Biological Processes were compared between eligible studies to describe how these
dynamic changes transform the myocardium from an injured and inflamed tissue into a scar. Then,
we address how cardioprotective interventions distinctly modulate the myocardial transcriptome
and discuss the implications of uncovering gene regulatory networks for cardiovascular pathologies
and translational applications.

Keywords: myocardial ischemia; cardioprotection; transcriptomics; signaling pathways; RNA-seq;
microarrays; swine

1. Introduction

Acute myocardial infarction (AMI), an ischemic injury that often results from coronary
artery occlusion, is a leading cause of morbidity and mortality worldwide [1,2]. An insuffi-
cient oxygen supply leads to progressive changes in the coronary microcirculation and in
the cardiomyocytes that irreversibly damage a significant portion of the myocardium [3,4].
During ischemia, the cellular metabolism shifts to anaerobic respiration, thus contributing
to mitochondrial membrane depolarization, increased cytosolic calcium, ATP depletion,
higher lactate production, cardiomyocyte death, and hindered myocardial contractile func-
tion [5]. Reperfusion restores the blood flow after ischemia, alleviating some ischemic
damage. Nonetheless, reperfusion also initiates a harmful inflammatory response and sub-
jects the myocardium to sudden biochemical and metabolic changes that further damage
the infarct region [6]. Therefore, developing effective strategies to protect cardiomyocytes
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against ischemia–reperfusion injury (IRI) is vital for treating AMI and reducing its severe
health and economic burdens.

Prompt myocardial reperfusion using thrombolytic therapy or primary percutaneous
coronary intervention lessens myocardial infarct size, preserves left ventricular systolic
function, and reduces the onset of heart failure, though with limited efficacy [7]. Moreover,
preclinical studies promising mechanical, pharmacological, and molecular interventions
against myocardial IRI have translated poorly into improved clinical outcomes in pa-
tients [8–11]. Rodents are the most often used species to study cardiovascular physiology
and disease. However, these small animal models insufficiently represent human patho-
physiological features and may not be reliable predictors of drug responses in pharmaco-
logical studies [12]. Thus, a significant challenge in developing effective cardioprotective
strategies relies on preclinical models better representing myocardial failure and infarction.

The pig (Sus scrofa) is a suitable species for biomedical research since it shares many
similarities with humans, including body size, anatomical features, physiology, and patho-
physiology [13]. The pig heart’s structure and fetal development also resemble those of
humans [14]. Furthermore, preclinical models of heart disease have demonstrated the
appropriateness of the pig for studies that require hemodynamic monitoring, myocardial
behavior assessment, and imaging measurements, as they can generate data to develop
algorithms able to guide medical interventions in human patients [15]. Additionally, the
porcine genome is three times closer to humans than the mouse genome, and detailed
analyses of the genes associated with human disease and drug–gene interactions have
uncovered a substantial similarity between both species [16,17].

Studying gene expression datasets derived from microarrays and high-throughput
sequencing can reveal novel functional interdependencies among signaling pathways that
concertedly determine cellular responses [18,19]. Understanding the timing of transcrip-
tional events and their modulation by cardioprotective strategies is critical to address the
pathophysiology of myocardial IRI [20]. Despite the relevance of pigs for translational stud-
ies of AMI, only a few studies have identified the transcriptomic landscape of myocardial
IRI and how changes in gene expression shape cellular signaling pathways in response
to injury.

Here, we will review transcriptomic studies that use Sus scrofa as a preclinical model to
gain insight into the signaling pathways involved in myocardial IRI and cardioprotection.
First, we will integrate gene expression data from experimental studies found through a
systematic search into signaling pathways. Then, we will present how cardioprotective
interventions distinctly modulate the myocardial transcriptome. Finally, we will discuss
the implications of uncovering gene regulatory networks for cardiovascular pathology and
translational applications.

2. Materials and Methods

This systematic review is reported following the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA) statement [21].

2.1. Elegibility Criteria

We selected experimental studies of myocardial IRI in Sus scrofa that included gene
expression analysis using either microarrays or high-throughput sequencing. All studies in
species other than the pig, non-original articles (reviews, editorials, and commentaries),
transcriptomic studies focused solely on non-coding RNA, studies on single-cell RNA
sequencing, and unpublished Gene Expression Omnibus (GEO) DataSets were excluded
from the review. All eligible studies were grouped into two categories: (1) studies with
transcriptomic data of myocardial IRI compared to healthy tissue and (2) studies with
transcriptomic data of myocardium in response to any cardioprotective intervention, with
or without IRI.
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2.2. Search Strategy

Next, we searched the PubMed database (https://pubmed.ncbi.nlm.nih.gov/, ac-
cessed on 9 March 2022) and the GEO database repository (https://www.ncbi.nlm.nih.
gov/geo/, accessed on 9 March 2022) starting from their inception and up to February 2022,
without language limitation. Three independent searches were conducted in PubMed using
the keywords “Myocardial ischemia reperfusion” AND “RNA sequencing”, “Myocardial
ischemia reperfusion” AND “microarray”, “Left anterior descending coronary artery AND
RNA sequencing”, and “Left anterior descending coronary artery” AND “microarray”. In
addition, the keywords “Myocardial ischemia reperfusion” and “Left anterior descending
coronary artery” were also introduced into the GEO database using the filters for species
(Sus scrofa) and study type (expression profiling by array and expression profiling by high
throughput sequencing). Selected articles contained gene lists or open access datasets of
differentially expressed genes (DEGs) derived from microarray analysis or high-throughput
sequencing.

Duplicate papers were removed. For the risk of bias assessment, three independent
reviewers initially screened the title and abstract of each study. Then two reviewers assessed
the full texts, excluded non-eligible studies, and confirmed eligible studies. Finally, any
conflict regarding the studies was settled by consensus.

2.3. Data Collection

For each study, the following data were retrieved: first were the author, year of pub-
lication, swine breed, sex, age, surgical procedure, occlusion time, reperfusion time, area
analyzed, type of cardioprotective intervention, transcriptomic platform, GEO accession
number, and lists of DEGs. Two reviewers independently extracted the data, and discor-
dance was settled by consensus. We extracted the DEGs (adjusted p-value < 0.05) from each
publication (S1). When the DEGs could not be retrieved directly from the publication, we
analyzed the open access GEO datasets using GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/, accessed on 11 March 2022) [22]. All the initial data manipulation was performed
on Excel 2017, version 15.33 (Microsoft Corporation, Bellevue, WA, USA).

2.4. Enrichment Analysis

Gene expression data sets were analyzed for significantly enriched terms using the En-
richr analysis tool (https://maayanlab.cloud/Enrichr/, accessed on 11 March 2022) [23,24].
Statistically significant results (adjusted p-values of <0.05) for Signaling Pathways (SPs),
Transcription Factors (TFs), Molecular Functions (MFs), and Biological Processes (BPs)
(S2) were selected according to their relevance and compared between the included stud-
ies to identify similarities and discrepancies. Equivalent TFs, SPs, MFs, and BPs across
datasets were manually curated. Only consistent results (i.e., from two or more data
sets) were considered, clustered according to their histological region as an Infarct Core
(IC), the area primarily affected by the ischemic insult that is infarcted or irreversibly
condemned to infarct regardless of reperfusion, or Border Zone (BZ), the tissue usually
located around the IC that is at risk of evolving to infarction but can still be rescued by
reperfusion, and ordered chronologically. The authors in each of the publications reviewed
determined how the IC and BZ were identified and processed for their transcriptomic
study. To confirm the relevant results, we functionally analyzed them with the g: Profiler
(https://biit.cs.ut.ee/gprofiler/gost, accessed on 11 March 2022) toolset using Sus scrofa as
the organism to match the input query gene list [25]. All data on the remote zone post-IRI
were excluded from the analysis.

2.5. Venn Diagrams

To identify comparisons in SPs and TFs from different models’ data sets, we graphed
relevant Enrichment analysis results (adjusted p-values of <0.05) using the Venn diagrams
online drawer tool (https://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 13
March 2022).

https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://maayanlab.cloud/Enrichr/
https://biit.cs.ut.ee/gprofiler/gost
https://bioinformatics.psb.ugent.be/webtools/Venn/
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2.6. Reactome Pathway Analysis

DEGs in response to cardioprotective interventions were subjected to Reactome Path-
way Analysis (https://reactome.org/PathwayBrowser/#TOOL=AT, accessed on 16 March
2022), and the 25 most relevant pathways (adjusted p-values of <0.05) were retrieved [26].

3. Results

A diagram of the systematic review process is presented in Figure 1. From the ten
studies included, four contained transcriptomic data of early post-infarction myocardial
tissue in the first (≤24 h) and second window (≥72 h). Another four studies addressed
transcriptional modulation at later times during chronic ischemic heart failure (≥28 days).
Only eight studies contained transcriptomic data in response to cardioprotective inter-
ventions. Table 1 summarizes the IRI models, the cardioprotective interventions, and the
transcriptomic platforms from each publication.
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Table 1. Summary of studies included in the systematic review.

References Breed Sex Occlusion/
Reperfusion Area Intervention Platform GEO

Accession

Esposito ML
et al., 2018

[27] *
Yorkshire Male 90 min/

120 min IC LV unloading
Porcine 1.0 ST
microarrays
(Affymetrix)

GSE108644

Zimmer-
mann M

et al., 2017
[28] *

Domestic Female 90 min/1 d IC/BZ/RZ -

Whole Porcine
Genome Oligo

Microarray
(Agilent)

-

Kaikkonen
MU et al.,
2017 [29] *

Farm Female 90 min/1 d IC/BZ -
GRO-

SeqIllumina
HiSeq2000

GSE81155

Lukovic D
et al., 2019

[30] *
Domestic Female 90 min/3 h

90 min/3 d IC/RZ IPostC
RNA-

SeqIllumina
HiSeq2500

-

Shen YT
et al., 2008

[31]
Unspecified Unspecified 60 min/4 d SE IPC

Porcine
Genome Array
(Affymetrix)

-

Depre C
et al., 2010

[32]
Domestic Female

10 min
Twice/1 d

10 min
Twicex6/1 h

Heart IPC
Porcine

Genome Array
(Affymetrix)

GSE21096

Chilukoti RK
et al., 2018

[33] *

German
Landrace

Male,
castrated 90 min/28 d IC/BZ Dronedarone

GeneChip
Porcine
Genome
Arrays

(Affymetrix)

-

Agnew EJ
et al., 2019

[34]

Yorkshire
Landrace Male/Female 60 min/30 d LV Age

RNA-
SeqIllumina

NovaSeq6000
GSE137293

Hinkel R
et al., 2020

[35] *

German
Landrace Male/Female 60 min/33 d BZ LNA-

antimiR-21

RNA-
SeqIllumina
HiSeq2000

-

Pavo N et al.,
2014 [36] * Domestic Female 90 min/60 d IC/BZ APOSEC

Sus Scrofa
Oligo

Microarray v2
(Agilent)

GSE47397

* Studies of myocardial IRI with DEGs used for enrichment analysis. Abbreviations: GEO, Gene Expression
Omnibus; IC, ischemic core; BZ, border zone; RZ, remote zone; SB, subendocardium; LV, left ventricle; IPostC,
ischemic postconditioning; IPC, ischemic preconditioning; LNA, locked nucleic acid; miR, microRNA; APOSEC,
secretome of apoptotic peripheral blood cells.

3.1. Time Course of Transcriptional Events in Myocardial IRI

IRI starts immediately after reperfusion, unleashing dynamic biochemical and me-
chanical changes that transform the myocardium from an injured tissue into a scar by
coordinating distinct healing phases (acute inflammation, repair, and chronic ischemic
heart failure) [37]. Through enrichment analysis of DEGs, we found temporal and spatial
changes in SPs, TFs, MFs, and BPs.

3.1.1. Signaling Pathways Upregulated in the IC and the BZ

According to Gene Enrichment analysis, thirty-one pathways were upregulated in the
IC after myocardial IRI (Figure 2A). Our analysis revealed that SPs activated by integrins,
chemokines, cytokines, tumor necrosis factor (TNF)-alpha, platelet-derived growth factor
(PDGF), and mTOR consistently appear two hours post-infarction and remain upregulated
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even after ≥28 days. At early time points post-IRI (≤3 days), DEGs were associated with
the AP-1 transcription factor network, IL2/STAT5 signaling, IL6-mediated signaling events,
HIF1A transcription factor network, and p53 effectors. However, transcriptomic changes at
the IC were more pronounced after 1 day, when essential pathways for acute inflammation
become activated. These pathways include T cell receptor (TCR) signaling, apoptosis, B
cell activation, and toll-like receptor (TLR) cascades. None of these early pathways were
upregulated at later time points (≥28 days). In contrast, cytoskeletal regulation by Rho
GTPases was the only pathway enriched exclusively during the scar maturation phase in
the IC. Then, when the upregulated DEGs were analyzed for outstanding outcomes of cell
signaling, the results reflect many defining features of infarction and ischemia, including
hypoxia, apoptosis, inflammation, angiogenesis, coagulation, and myocardial dysfunction.
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Figure 2. Active Signaling Pathways (SPs) in the Infarct Core (A) and the Border Zone (B). For each
histological area, upregulated genes registered in the published data sets were analyzed separately
using Enrichr and g: Profiler to identify active SPs. Only results with significant adjusted p-values
(<0.05) were considered as active in the tissues corresponding to each data set. Identified active SPs
in at least two data sets were defined as active in this comprehensive IRI analysis. Active SPs were
ordered chronologically. Colored boxes indicate the active SPs. Active SPs common to the Infarct
Core and the Border Zone are highlighted in grey. Listed Active SPs from each histological area were
compared to identify similarities using a Venn diagram (not shown).

In contrast, only twenty-six SPs were upregulated in the BZ after IRI (Figure 2B). Most
pro-inflammatory signaling cascades appear as early as 3 h from the start of reperfusion and
persist even after 28 days, suggesting that although the BZ suffers less damage than the IC,
inflammation in the BZ is unresolved. Similarly, integrin signaling remained upregulated
at different time points, indicating active tissue repair post-infarction. Among the enriched
signals restricted to the early phase (up to 3 days), we found the EGFR, PDGF, PI3K, and
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p53 pathways, whereas transforming growth factor (TGF)-beta signaling activity occurs
only at later stages (28–60 days).

Although we primarily focused on upregulated SPs for their translational potential
to identify novel drug targets, we also performed enrichment analysis of downregulated
DEGs. The biological significance of the enrichment analysis reflected the downregulation
of SPs known to associate with ischemia and AMI, such as a reduced oxidative metabolism,
calcium imbalance, and impaired cardiomyocyte contractile function (data not shown). In
general, analyzed downregulated gene datasets were heterogenic; therefore, it was difficult
to reach a clear consensus when comparing enrichment results.

Interestingly, we found nineteen SPs common to the IC and the BZ (Figure 2A,B)
involved in inflammation, apoptosis, and extracellular matrix (ECM) remodeling. Undoubt-
edly, the striking discrepancies between the progression and fate of both areas must rely
upon differences in the signaling events’ intensity, timing, specificity, and regulation. It is
essential to notice the apparent divergence between the outcomes’ timelines in the IC and
the BZ (S2). While the pathological processes in the IC appeared to be temporarily scattered
and activated in just a few hours post-infarction, in the BZ, the significant outcomes were
mainly restricted to the chronic phase (28, 33, and 60 days). Pathways associated with
ECM remodeling and myogenesis were among the main events happening late at the
BZ, whereas only hypoxia and angiogenesis appeared as active processes throughout all
recorded times.

3.1.2. Transcription Factors Upregulated in Myocardial IRI

TFs regulate cellular processes and provide a link between signaling pathways and
gene regulation [38]. Here, we identified thirty-one TFs in the IC (Figure 3A). Nuclear
factor-kappa b (NFKB1) and TP53 were the most frequently upregulated TFs, present in
five out of seven data sets analyzed. NFKB1 upregulation started at the early phases of
myocardial IRI, and its expression was maintained up to 28 days post-infarction. Similarly,
TP53’s upregulation appeared 2 h after the start of reperfusion and remained increased at
60 days.

In the IC, several TFs were differentially expressed during the first and second win-
dows post-infarction (≤3 days) including JUN, STAT3, ATF2, ESR1, SPI1, RELA, RUNX1,
STAT1, MYC, ETS1, GATA2, KLF4, NELFE, and STAT6 (Figure 3A). Many of these early
response TFs are cardioprotective and mediate DNA damage responses, metabolic regula-
tion, immunity, and inflammation [39–41]. In contrast, the AR, CTNNB1, and EGR1 were
identified as upregulated TFs throughout the acute and chronic stages (≥3 days), which
correlates with their role in modulating transcriptional programs associated with resolution
and repair in response to tissue injury [42–44]. Additionally, ubiquitous nuclear proteins
such as SRF and basic helix–loop–helix transcription factors such as TCF12 play crucial
functions in cell fate specification and differentiation during cardiac development [45,46].
Both SRF and TCF12 were upregulated at 28 and 60 days, highlighting their involvement
during the chronic stages of myocardial IRI.

In the BZ, we found seventeen upregulated TFs predominantly associated with inflam-
mation and proliferation (Figure 3B). Of note is that several members of the STAT family
were identified at times ranging from 3 h up to 60 days. In addition, NFE2L2, a modulator
of oxidative stress, was upregulated at 1, 28, and 60 days [47,48]. Finally, eleven TFs were
upregulated in datasets from both areas (IC and BZ), namely, SPI1, STAT1, STAT3, STAT5A,
STAT6, NFKB1, RELA, AR, ESR1, JUN, and TP53 (Figure 3A,B).
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Figure 3. Active Transcription Factors (TFs) in the Infarct Core (A) and the Border Zone (B). For
each histological area, upregulated genes registered in the published data sets were analyzed
separately using Enrichr to identify active TFs in each study. Only results with significant ad-
justed p-values (<0.05) were considered as active in the tissues corresponding to each data set.
Identified active TFs in at least two data sets were defined as active in this comprehensive IRI anal-
ysis. Active TFs were ordered chronologically. Colored boxes indicate the active TFs. Active TFs
common to the Infarct Core and the Border Zone are highlighted in grey. Listed Active TFs from each
histological area were compared to identify similarities using a Venn diagram (not shown).

3.1.3. Molecular Functions and Biological Processes in Myocardial IRI

Analysis of DEGs at the IC identified chemokine binding, CC chemokine binding, and
chemokine receptor activity as the most prominent MFs 1-day post-infarction (Figure 4A).
This strong chemokine response is a characteristic of the inflammatory response in reper-
fused myocardial infarction and may play an essential role in regulating leukocyte re-
cruitment, angiogenesis, and fibroid tissue deposition [49]. In addition, we found early
and sustained responses up to 3 days after IRI related to the carbohydrate metabolism
(mannokinase and fructokinase), collagen binding in cell–matrix adhesion, and kinase and
phosphatase activities.
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Most of the early processes (≥1 day) transcriptionally activated after myocardial IRI
correlated with the hallmarks of the inflammatory response (i.e., cytokine stimulus, cell
migration, neutrophil degranulation, and modulation of the immune response) (Figure 4B).
Although neutrophil activity was also detected at 28 days post-infarction, the prominence
of inflammation diminishes at later times. Instead, the most notable changes detected
during the chronic phase of myocardial IRI were related to ECM organization and turnover.
Thus, the first days after IRI are defined by an intense inflammatory response in the IC that
fades progressively. After a month, the main biological processes are related to changes in
the ECM responsible for the ventricular remodeling and the scar formation occurring at
chronic stages.

In the BZ, the MFs found at early time points were consistent with the inflamma-
tory process and tissue remodeling found in the IC (Figure 4A,B). Some of these MFs,
including chemokine activity, cytokine receptor activity, cell–matrix activity, and PDGF
binding, remained detectable in the BZ even after 33 days post-infarction. Comparison
between MFs’ profiles showed that chemokine-mediated responses occur in both the IC
and BZ (Figure 4A,B), evidencing that leukocyte trafficking is a common phenomenon in
both histological areas. The BPs occurring in the BZ are driven by ECM remodeling and
inflammation (Figure 4B). Despite the similarities in the BPs’ analysis between the IC and
BZ, it is important to distinguish that in the BZ, most of the processes occur during the
chronic phase of IRI (28, 33, and 60 days), reflecting a delay in the onset of the processes.
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separately using Enrichr and g: Profiler to identify active MFs and BPs in each study. Only results
with significant adjusted p-values (<0.05) were considered as active in the tissues corresponding to
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3.2. Gene Expression Profiles Induced by Cardioprotective Strategies

Cardioprotection encompasses all actions and interventions aimed at reducing my-
ocardial IRI. However, of all the studies included, only eight contained information re-
garding DEGs in response to cardioprotective strategies (Table 1), and their findings are
discussed below.

3.2.1. Ischemic Preconditioning

Ischemic preconditioning (IPC) is a term initially coined by Murry CE et al. to describe
the ability of short periods of ischemia to limit the infarct size that has widened to include
beneficial effects on other IRI outcomes such as myocardial stunning and arrhythmias [50].
Depre C et al. have explored the transcriptomic profile of three experimental swine models
of IPC that mimic the clinical conditions encountered by patients who often experience
repetitive episodes of ischemia and reduce the infarct size 60–85% [32].

The first model, a classical second-window IPC (SWOP) that consists of 10-min
episodes of coronary artery occlusion (CAO) followed by 24 h of reperfusion, depends
on nitric oxide to exert its cardioprotective effects since pretreatment with a nitric oxide
synthase (NOS) inhibitor abates the IPC (Figure 5A). In contrast, the other two IPC mod-
els, repetitive CAO/reperfusion (RCO) and repetitive coronary stenosis (RCS), elicit their
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cardioprotective effects independently of nitric oxide (Figure 5B,C). Microarray analysis
revealed distinct transcriptional programs in response to each IPC model [32].
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(D) Main cardioprotective pathways up and downregulated in all three models of IPC, highlighting
their widespread cardioprotective potential in myocardial IRI.

Furthermore, enrichment analysis of upregulated genes in SWOP showed pathways
involved in mitochondrial translation, respiratory electron transport, ATP synthesis, glu-
cose metabolism, organelle maintenance, p53-regulated transcription of genes involved
in cell cycle arrest, and DNA damage recognition in global genomic nucleotide excision
repairing (GG-NER) (Table 3). In contrast, the downregulated pathways included TGF-β
receptor signaling via SMAD proteins, cytokine signaling, RUNX2 migration, and nuclear
receptor transcriptional pathways (Figure 5D).
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Table 2. Pathways modified by IPC interventions in the heart.

IPC Model
Pathway Name

Upregulated Downregulated

RCO

• Interferon gamma signaling
• Class I MHC antigen presentation
• Signaling by retinoic acid
• Cytokine Signaling in the immune system
• FCGR activation
• Fcγ receptor dependent phagocytosis
• Chromosome maintenance
• Neddylation

• Cell cycle
• Gene expression (Transcription)
• mRNA 3’-end processing
• RNA Pol II transcription termination
• Transport of transcript to cytoplasm
• mRNA splicing
• Signaling by Rho GTPases

RCS

• Nonsense Mediated Decay (NMD) independent
of the Exon Junction Complex (EJC)

• SRP-dependent cotranslational protein targeting
to membrane

• Cellular response to starvation
• Eukaryotic Translation Elongation
• Response of EIF2AK4 (GCN2) to amino acid

deficiency
• Major pathway of rRNA processing in the

nucleolus and cytosol
• Selenocysteine synthesis
• Signaling by SLIT/ROBO receptors
• Neutrophil degranulation
• Signaling by Interleukins

• Respiratory electron transport
• Pyruvate metabolism and citric acid (TCA) cycle
• Mitochondrial biogenesis and protein import
• Glyoxylate metabolism and glycine degradation
• TFAP2 (AP-2) family regulates transcription of

growth factors and their receptors
• Triglyceride catabolism
• RUNX1 and FOXP3 control of Tregs
• Hormone ligand-binding receptors
• Striated muscle contraction
• Adherens junctions’ interactions
• TRAF6 and TAK1 mediated NF-kB activation
• Gluconeogenesis
• Myogenesis

SWOP

• Translation
• Respiratory electron transport and ATP synthesis
• Organelle biogenesis and maintenance
• Insertion of tail-anchored proteins
• into the endoplasmic reticulum membrane
• Gluconeogenesis
• Glucose metabolism
• Nectin/Necl trans heterodimerization
• Class I peroxisomal membrane protein import
• TP53 regulates transcription of genes involved in

G2 cell cycle arrest
• DNA Damage Recognition in GG-NER

• TGF-beta receptor signaling activates SMADs
• Chemokine receptors bind chemokines
• Response to elevated platelet cytosolic Ca2+

• RHO GTPases activate CIT
• Nuclear receptor transcription pathway
• Interleukin-10 signaling
• Platelet activation, signaling, and aggregation
• Response of EIF2AK1 (HRI) to heme deficiency
• RUNX2 regulates genes involved in cell migration
• Signaling by interleukins
• Signaling by GPCR

RCP/RCS/
SWOP

• Unfolded Protein Response (UPR)
• XBP1(S) and IRE1alpha activate chaperone genes
• Pyrophosphate hydrolysis
• Metabolism of nucleotides
• Calcineurin activates NFAT
• Transcriptional regulation by small RNAs
• ATF6 (ATF6-alpha) activates chaperone genes
• TP53 regulates transcription of DNA repair genes
• Translation
• Neutrophil degranulation
• Protein repair
• mRNA Splicing—minor pathway

• RUNX3 regulates BCL2L11 (BIM) transcription
• AMPK inhibits chREBP transcriptional activation

activity
• AKT phosphorylates targets in the nucleus
• mTORC1-mediated signaling
• WNT mediated activation of DVL
• Defective binding of RB1 mutants to E2F1, (E2F2,

E2F3)
• FOXO-mediated transcription of cell death genes
• Deadenylation of mRNA
• Interleukin-4 and Interleukin-13 signaling
• Estrogen-dependent nuclear events
• Beta-oxidation of pristanoyl-CoA
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In the RCO model, immune pathways such as interferon-gamma signaling, class I
MHC mediated antigen processing and presentation, Fcgamma receptor-dependent phago-
cytosis, and cytokine signaling were highly enriched, along with retinoic acid signaling and
neddylation (Table 3). In addition, downregulated DEGs are mainly enriched in signaling
by Rho GTPases, cell cycle, and transcription. Meanwhile, the RCS model induced upregu-
lation of genes enriched in pathways associated with the cellular response to starvation and
SLIT/ROBO signaling; and downregulation of genes involved in metabolism, adherens
junctions’ interactions, and NFkB activation (Table 3).

Interestingly, enrichment analysis demonstrates that a subset of DEGs is common
in all three IPC models (SWOP, RCO, and RCS), suggesting that their influence on com-
mon pathways can act as a broad cardioprotective signature (Table 3). These enriched
upregulated pathways include the unfolded protein response, metabolism of nucleotides,
calcineurin activation of NFAT, transcriptional regulation by small RNAs, transcriptional
regulation by p53, neutrophil degranulation, and mRNA splicing. Meanwhile, common
downregulated pathways comprise AKT phosphorylation of its nuclear targets, WNT
signaling, FOXO-mediated transcription of cell death genes, mTORC1-mediated signaling,
interleukin signaling, and estrogen-dependent nuclear events (Table 3).

Shen Y et al. used the previously described IPC protocols (RCS and SWOP) in a
swine model of lethal ischemia induced by 60 min of coronary artery occlusion followed by
reperfusion to study transcriptional changes occurring at the subendocardium of the area
at risk at 4 days post-infarction [31]. Only 31% of DEGs in this IRI model after RCS were
also regulated in SWOP. Broad categories of genes induced by RCS but not SWOP included
those involved in autophagy, endoplasmic reticulum stress. Thus, upregulation of genes in
autophagy, ER stress, cell cycle, and cell survival, together with downregulation of genes in
mitochondrial function, define the cardioprotective mechanisms elicited by the RCS model
and distinguishes it from the SWOP model 4 days after myocardial IRI.

3.2.2. Ischemic Postconditioning

Ischemic postconditioning (IPostC) consists of cycles of brief coronary occlusion-
reperfusion applied during reperfusion soon after a sustained coronary occlusion that,
unlike IPC, can be applied in patients undergoing interventional coronary reperfusion
by primary Percutaneous Coronary Intervention for acute ST-segment elevation myocar-
dial infarction (STEMI) [51]. In STEMI patients, IPostC limits infarct size, reduces mi-
crovascular obstruction, decreases edema, and improves contractile function [52]. In a
clinically relevant porcine model, Lukovic D et al. have demonstrated that six 30 s cycles of
occlusion-reperfusion applied immediately after a prolonged ischemic insult fails to reduce
myocardial necrosis size but closely replicates the cardioprotective effect of IPostC on the
coronary microvasculature seen on STEMI patients [30]. Furthermore, RNA-seq analy-
ses on myocardial samples from pigs that underwent myocardial IRI followed by IPostC
identified distinct DEGs in the IC. Enriched upregulated pathways included signaling by
receptor tyrosine kinases (ERBB2 and ALK), MAPK family signaling cascades, intracellular
signaling by second messengers, syndecan and integrin cell surface interactions (Table 3).
In contrast, downregulated pathways associated with VEGFR2 mediated vascular perme-
ability, energy dependent regulation of mTOR by LKB1-AMPK, regulation of p53 activity,
and FLT3, FGFR1, SCF-KIT, and G-CSF signaling (Table 3).
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Table 3. Pathways modified by cardioprotective interventions after myocardial IRI.

Cardioprotective
Intervention

Pathway Name

Upregulated Downregulated

IPostC
(3 d)

• Cytokine signaling in the immune system
• Signaling by receptor tyrosine kinases
• Syndecan interactions
• Intracellular signaling by second

messengers
• Signaling by ALK
• MAPK family signaling cascades
• Integrin cell surface interactions
• Signaling by ERBB2

• Detoxification of reactive oxygen species
• MTOR signaling
• Signaling by SCF-KIT
• Cytokine signaling in the immune system
• Signaling by CSF3 (G-CSF) and FGFR1
• Energy-dependent regulation of mTOR by

LKB1-AMPK
• VEGFR2-mediated vascular permeability
• FLT3 signaling
• Regulation of TP53 activity

LV unloading
(2 h)

• Citric acid cycle and respiratory electron
transport

• Complex I biogenesis
• Cristae formation and mitochondrial

protein import
• Muscle contraction
• Cardiac conduction
• Mitochondrial fatty acid beta-oxidation
• Branched-chain amino acid catabolism
• TP53 Regulates Metabolic Genes
• Mitochondrial translation
• Neddylation
• Regulation of pyruvate dehydrogenase

complex

• ECM organization and degradation
• Integrin cell surface interactions
• Activation of C3 and C5
• Regulation of insulin-like growth factor
• Post-translational protein phosphorylation
• Non-integrin membrane-ECM interactions
• Platelet activation, signaling and aggregation
• Signaling by NOTCH3
• Other semaphorin interactions
• RUNX2 regulates genes involved in

differentiation of myeloid cells

Dronedarone
(28 d)

• ECM organization and degradation
• Syndecan interactions
• Signaling by MET
• Integrin cell surface interactions
• Smooth Muscle Contraction
• Non-integrin membrane–ECM interactions
• CD163 mediating an anti-inflammatory

response
• SMAC, XIAP-regulated apoptotic response
• Apoptosome-mediated caspase activation
• EPH-Ephrin signaling

• Mitochondrial translation
• Citric acid cycle and respiratory electron

transport
• Ketone body metabolism
• Branched-chain amino acid catabolism
• Pyrophosphate hydrolysis
• Formation of TC–NER pre-incision complex
• RHO GTPases activate CIT
• Nuclear Receptor transcription pathway

LNA-antimiR-21
(33 d)

• Tie2 Signaling
• MAPK1/MAPK3 signaling
• STAT5 activation
• Netrin mediated repulsion signals
• Signaling by Leptin
• Prolactin receptor signaling
• Interleukin-6 signaling

• Chemokine receptors bind chemokines
• Signaling by Interleukins and cytokines
• Negative regulation of FGFR2 signaling
• FGFR2 ligand binding and activation
• Phospholipase C-mediated cascade; FGFR2
• Negative regulation of TCF-dependent signaling

by WNT ligand antagonists
• PI3K/AKT Signaling
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Table 3. Cont.

Cardioprotective
Intervention

Pathway Name

Upregulated Downregulated

APOSEC
(60 d)

• Plasmalogen biosynthesis
• Striated muscle contraction
• NCAM1 interactions
• Peroxisomal protein import
• Glycerophospholipid biosynthesis
• Phospholipid metabolism
• RHO GTPase cycle
• Signaling by Rho GTPases

• Cytokine signaling and cell recruitment
• TP53 regulates transcription of cell death genes
• Pyroptosis
• PD-1 signaling
• DAP12 interactions
• The AIM2/IPAF inflammasome
• Nef and signal transduction
• TCR signaling

3.2.3. Primary LV Unloading

Percutaneously delivered transvalvular axial-flow pumps (TV-pump) are routinely
used in the clinic to increase systemic mean arterial pressure while reducing left ventricular
(LV) wall stress and myocardial oxygen demand [53]. Primary unloading the left ventricle
using a TV-pump while delaying coronary reperfusion reduces the myocardial infarct
size by more than half when compared to immediate reperfusion [54]. In a swine model
of myocardial IRI, primary unloading decreases LV scar size and is associated with a
higher stroke volume, cardiac output, and stroke work 28 days after injury [27]. The
cardioprotective effects of primary unloading have mainly been attributed to an increase in
the level and activity of the stromal-cell-derived CXCL12 [55]. Esposito ML et al. found that
primary unloading increases circulating CXCL12 levels during the 28 days after myocardial
IRI, which peaks at week one [27]. Moreover, LV unloading prior to reperfusion maintained
the levels of this chemokine high within the IC.

Whole-transcriptome expression analysis on the infarct zone after the acute phase
revealed that LV unloading for 30 min before reperfusion causes global gene expression
changes and attenuates the transcriptomic response caused by reperfusion alone [27]. In
addition, LV unloading regulates genes associated with the metabolism, mitochondrial
function, and cellular respiration (Table 3). Enrichment analysis showed the upregula-
tion of DEGs in the citric acid cycle and respiratory electron transport, mitochondrial
protein import, cardiac conduction, mitochondrial fatty acid beta-oxidation, amino acid
catabolism, p53 regulation of metabolic genes, neddylation, and muscle contraction. In
contrast, downregulated DEGs belonged to pathways associated with ECM remodeling,
non-integrin membrane–ECM interactions, integrin cell surface interactions, complement
activation, regulation of IGF signaling, post-translational protein phosphorylation, notch
signaling, platelet activation, semaphorin interactions, and RUNX2 regulation of myeloid
cells’ differentiation.

3.2.4. Pharmacological Cardioprotection

Many drugs assessed in preclinical studies for their potential effects on AMI target
previously identified signal transduction pathways to either inhibit deleterious processes
such as apoptosis and oxidative stress or promote cardioprotection via the increased
formation of adenosine or nitric oxide [56–58]. Dronedarone is an antiarrhythmic drug
that reduces cardiovascular mortality and the incidence of acute coronary syndromes in
patients with Atrial Fibrillation [59]. Dronedarone also reduces the infarct size in animal
models of acute myocardial IRI and cerebral infarction [60,61].

Chilukoti RK et al. orally administered dronedarone to pigs twice a day, starting 7 days
before the experimental myocardial IRI and continuing after 28 days [33]. Although the
hemodynamic parameters and infarct size remained unchanged by dronedarone, expres-
sion profiling on the IC and the BZ showed that dronedarone modifies the transcriptional
response of myocardial IRI. Interestingly, dronedarone’s impact on gene expression occurs
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primarily at the BZ. Several pathways are significantly affected by dronedarone under
conditions of AMI, including ephrin receptor signaling, hepatic fibrosis signaling, PKA
signaling, adherence junction signaling, integrin signaling, inhibition of matrix metallopro-
teases, and cell death (Table 3).

In contrast, only minor changes in gene expression (NPPA, ELN, EFNB2, ACOX3, and
GATA3) occur within the IC after dronedarone treatment. However, dronedarone was
able to modify the intensity of the late myocardial IRI transcriptional response through
significant modulation of ephrin receptor signaling, PKA signaling, adherence junction
signaling, integrin signaling, mitochondrial dysfunction, and NFAT in cardiac hypertrophy
(Table 3).

3.2.5. AntagomiRs

MicroRNAs (miRNAs) are non-coding functional transcripts of around 22 nucleotides
in length that post-transcriptionally regulate entire biological pathways [62]. miR-21 is
critical during the early phase of AMI and is upregulated in both the left ventricular
myocardium’s remote and border regions [63]. Recently, Hinkle R et al. studied the
therapeutic efficacy of intracoronary delivery of a locked nucleic-acid-modified antimiR-21
(LNA-antimiR-21) in pigs that underwent transient percutaneous occlusion of their left
coronary artery [35].

At 33 days after IRI, LNA-antimiR-21 reduced the infarct size and improved cardiac
function. Moreover, RNA-seq analysis revealed a suppression of the inflammatory response
and mitogen-activated protein kinase signaling [35]. Enrichment analysis of DEGs in the
LNA-antimiR-21-treated BZ showed an upregulation of signal transduction mediators,
particularly those associated with angiogenesis, such as Tie-2 signaling and netrin-mediated
repulsion signals (Table 3). LNA-antimiR-21-induced cardioprotection was accompanied
mainly by cardiac downregulation of genes belonging to signaling by interleukins and
cytokines, FGFR2 ligand binding and activation, PI3K/AKT signaling, and WNT signaling.

3.2.6. Regenerative Therapies

The adult heart is a highly specialized organ with limited regenerative potential in
response to injury [64]. Hence, regenerative medicine therapies have aimed to repair
damaged hearts by either directly replacing injured myocardial cells with contractile and
noncontractile cells or by paracrinally modulating endogenous repair processes such as
inflammation, apoptosis, angiogenesis, and fibrosis [65]. Pavo N. et al. have demonstrated
that the secretome of apoptotic peripheral blood cells (APOSEC), which contains a combina-
tion of cytokines and growth factors, regenerates the myocardium after acute and chronic
IRI [66]. Moreover, since APOSEC is derived from large numbers of readily-obtainable
peripheral blood cells, it overcomes some of the inherent obstacles of cell therapy related
to the relatively small number of available autologous adult cells compared to the large
volume of cells required for intramyocardial delivery [67].

Percutaneous intramyocardial delivery of APOSEC at day 30 was safe and effective
in a porcine model of chronic left ventricular dysfunction induced by myocardial IRI [36].
Moreover, at day 60 post-infarction, APOSEC-treated animals had significantly smaller
infarcts, improved hemodynamic function, and enhanced vascular density compared to
medium-treated animals. APOSEC’s cardioprotective effects coincided with DEGs in both
IC and BZ. Only a few genes with known functions were upregulated in APOSEC-treated
myocardium (TPM3, KLF11, MYOZ1, PRNP, and GNPAT). In contrast, enrichment analysis
(Table 3) showed the downregulation of pathways associated with cytokine signaling, T cell
receptor (TCR) signaling, p53 transcriptional regulation of cell death genes, inflammasome
activation, and pyroptosis.

In a different study, Agnew EJ et al. addressed cardiac regeneration using a transient
cardiac injury approach in weaned pigs at postnatal day (P) 30 when cardiomyocyte
mitotic activity is still observed [34]. Nevertheless, there was no myocardial regeneration
at 4 weeks after IRI, and only decreased cardiac function, scar formation, and increased
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inflammation were detected. RNA-seq analysis comparing the IC with healthy myocardium
showed upregulation of CD69, CD72, CD86, CD209, IL10, IL18, IL18R, CXCL9, CXCL10,
CXCL11, and CXCR3. Most transcriptional changes were associated with immune and
inflammatory pathways and were confined to the scar zone rather than the BZ. Despite
these findings, cardiac regeneration after IRI in young pigs appeared to be blocked by scar
development. Moreover, the presence of mitotic activity in a subset of cardiomyocytes
was not cardioprotective since it failed to promote cardiac repair, at least in this model of
myocardial IRI.

4. Discussion

Much of our understanding of myocardial IRI’s pathology and cardioprotective in-
terventions comes from preclinical acute and chronic tissue damage models. Even though
none of the preclinical models perfectly recreates the cellular and molecular aspects found
in humans, the use of animals such as the pig in biomedical research makes it possible to
recapitulate diseases with a particular affinity in order to investigate their mechanisms and
possible pharmacological and cellular treatments in less time than what would typically
happen [12]. Furthermore, transcriptomic studies in porcine models of cardiovascular
disease offer great potential for discovering novel pathogenic mechanisms and producing
more significant results that can efficiently be applied to benefit human health [68].

Here, the integration of transcriptomic data from different studies of myocardial IRI
provides us with an integrated view of the signaling complexities occurring in distinct
cardiac areas (IC vs. BZ) and their dynamic modulation throughout time (Figure 6). In
the IC, inflammation, immune cell infiltration, and apoptosis predominate during the
first hours and days after reperfusion, gradually fading until being replaced by ECM
protein accumulation and scarring, which alter the physical arrangement and stiffness
of the tissue. Meanwhile, in the BZ, signaling pathways associated with inflammation,
hypoxia, and angiogenesis that become upregulated soon after reperfusion remain present
at chronic phases, even when ECM remodeling and myogenesis processes prevail. Many of
the pathways upregulated after IRI have been previously described in other non-human,
preclinical experimental models [20]. However, a direct comparison of the transcriptomic
regulation of myocardial IRI between the pig and other animal models has not been
addressed, and further studies are needed to uncover any distinct differences between
animal models.

Despite the insights gained through the enrichment analyses of DEGs post-infarction, the
transcriptomic studies reviewed here only considered early (≤4 days) and late (≥28 days) time
points, thus leaving a gap in between corresponding to the phase in which the resolution of
inflammation and tissue repair occurs [37]. There are significant translational implications
of elucidating the gene regulatory networks preceding late adverse remodeling events
characterized by the progressive cross-linking of collagen and elastin fibers that make
scar resolution increasingly challenging [69]. Understanding how signaling pathways that
influence post-IRI repair are transcriptionally modulated could lead to identifying poten-
tial therapeutic targets that may successfully influence cardiac regeneration rather than
repair. Furthermore, when overstimulated, the same pathways that promote regeneration
progressively drive scarring and tissue decay due to damage-induced ECM deposition [70].
Thus, transcriptomic studies of myocardial IRI in swine at the repair and resolution phase
are urgently needed to uncover time-dependent gene networks at the intersection between
regeneration and fibrosis.

Cardioprotective interventions in the experimental models of myocardial IRI reviewed
prevented cell death during acute injury and attenuated the destructive processes that occur
during ventricular remodeling through the downregulation of oxidative stress, inflam-
matory pathways (interleukins, cytokines, myeloid cells differentiation, TCR signaling),
ECM remodeling, FGFR2 signaling, and p53 activity (Table 3). Although an excessive and
sustained inflammatory response post-IRI leads to increased cell death, adverse remodeling,
and contractile dysfunction, there is a lack of successful therapeutic strategies targeting
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pro-inflammatory signaling pathways. Several clinical and preclinical studies targeting
inflammation through the inhibition of complement cascades, interleukins, and matrix
metalloproteinases hold promise for major adverse clinical event reductions in patients
with AMI [71]. However, the complexity of the resolution of inflammation and the heal-
ing process makes it necessary to search for novel cardioprotective pathways that can be
modulated to improve AMI outcomes.
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Transcriptomic analysis of cardioprotective interventions early post-infarction (Table 3)
revealed the upregulation of MAPK cascades, the mitochondrial energy metabolism, and
neddylation (Figure 7). Various studies have established a link between MAPK signaling
and mitochondria [72]. Mitochondrial KATP channels protect against myocardial IRI, and
cardioprotective strategies that activate PKC also potentiate mitochondrial KATP channel
opening [73]. Moreover, the opening of mitochondrial KATP channels activates p38 MAPK,
whereas anisomycin, a MAPK activator, is cardioprotective, and this effect is blocked by
mitochondrial KATP channels’ inhibition [74]. Additionally, pharmacological modulation
after myocardial IRI to increase the cardiac energy metabolism has been proposed to
manage ischemic damage from AMI [75]. Multiple approaches to enzymatic machinery
inhibition have been tested to reduce the rate of fatty acid oxidation, switch the source
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of acetyl-CoA to pyruvate derived from glucose, glycogen, and lactate, generate more
significant amounts of ATP, reduce the harmful effects of fatty acid metabolites, and
decrease lactate and H+ production during ischemia and reperfusion.
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Neddylation, a recently described protein conjugation pathway like the ubiquitin-
proteasome system, is deregulated in patients suffering from dilated and ischemic car-
diomyopathy [76]. Neddylation promotes cardiomyocyte survival and regulates autophagy
under oxidative stress conditions [77]. Moreover, inhibiting neddylation using MLN4924
limits the infarct size after IRI, thus suggesting that deficient ubiquitination–proteasome
coupling contributes to myocardial IRI [78].

In contrast, ephrin signaling, Tie2 cascades, netrin-mediated repulsion signals, and
Rho GTPase signaling have emerged as upregulated pathways during the chronic phase in
response to cardioprotective interventions (Figure 7). Ephrin ligands are classified into two
subclasses: EphrinA ligands anchored to the cell membrane by a glycosyl-phosphatidyl-
inositol linkage and transmembrane-spanned EphrinB ligands. The interaction between
Ephrin ligands and their Eph receptors has been proposed as a potential therapeutic target
in AMI treatment, particularly EphrinA1-Fc, that influences cardiomyocyte survival and
regeneration [79,80].

The endothelial Tie2 receptor tyrosine kinases, together with the angiopoietins, belong
to an endothelial-specific signaling pathway with essential functions in the regulation of
cardiovascular development and vascular homeostasis [81]. Tie2 gene-targeted mouse
embryos are embryonically lethal and exhibit impaired cardiac development [82]. Inter-
estingly, angiopoietin-1 prevents vascular leakage, promotes cardiomyocyte survival via
integrin-β1-mediated ERK phosphorylation, and improves hemodynamic parameters after
myocardial IRI [83].

Additionally, netrins belong to a family of laminin-like proteins initially described
in axonal guidance [84]. Netrin-1 regulates angiogenesis in response to ischemic insults
and exerts a cardioprotective effect in myocardial infarctions via ERK1/2-dependent nitric
oxide activation by endothelial nitric oxide synthase (eNOS) [85]. Moreover, small netrin-1-
derived peptides are highly effective in protecting the heart against myocardial IRI and have
been proposed as drugs directly applicable to the treatment of myocardial infarctions [86].
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Finally, the Ras homolog gene family member A (RhoA) from the Rho GTPase su-
perfamily controls actin dynamics, signal transduction, and transcription, thus affecting
survival, proliferation, and migration [87]. RhoA is essential for cardiac remodeling, and
its cardiac-specific overexpression results in dilated cardiomyopathy and heart failure [88].
However, Rho GTPase signaling has also been described as cardioprotective by modulating
the target genes implicated in cardiomyocyte differentiation, cell growth, proliferation, and
anti-apoptotic signaling pathways. One of these genes is CCN1, a growth-factor-inducible
early gene associated with proliferation and survival signaling in cardiomyocytes and
SRF [89]. Additionally, Rho cardioprotective mechanisms have been linked to the activation
of PTEN and PLC, leading to increased cytoplasmic Ca2+ levels to promote cardiomyocyte
contractility [90]. Furthermore, the RhoA/ROCK-induced activation of PI3K has been
shown to promote cell survival signaling by activating AKT signaling [91].

In this systematic review, our analysis of transcriptomic changes in experimental swine
models of myocardial IRI was limited by the small number of studies, the fact that many
publications failed to provide complete data on DEGs, the sample size, the heterogeneity of
transcriptomic platforms, the lack of consideration of non-coding RNAs, and the vast array
of cardioprotective interventions. Additionally, the included studies exhibited considerable
differences in their subject characteristics (different swine breed, age, sex, and hormonal
status) and experimental conditions (ischemia and reperfusion times). Moreover, systematic
reviews, followed by meta-analysis, are urgently needed to analyze and combine results
from similar transcriptomic studies to further understand gene expression changes and cell
signaling pathways elicited by IRI and cardioprotection.

5. Conclusions

Transcriptomic analyses of myocardial IRI in swine highlight spatiotemporally con-
trolled signaling pathways that recapitulate the events of inflammation, cell recruitment,
apoptosis, and ECM deposition that are characteristic of this lesion. Increasing our knowl-
edge of gene regulatory networks modulated by cardioprotective interventions in suitable
preclinical models of myocardial IRI can lead to novel therapeutic targets for AMI. Al-
though the striking heterogeneity of cardiac remodeling poses a significant challenge for
the clinical implementation of cardioprotective interventions, a coordinated attempt is nec-
essary to elucidate the molecular signals responsible for adverse remodeling. Furthermore,
understanding cell signaling’s transcriptomic modulation balancing tissue regeneration
and fibrosis is essential to developing effective therapeutic interventions and predicting
disease progression.
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