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Abstract
This investigation reports an eco-friendly fabrication of cerium vanadate nanoparticles (CeVO4 NPs) for the first time by an
utterly green approach using Azadirachta indica leaves extract as a natural fuel. Textural properties of the as-prepared
CeVO4 NPs, such as structural, topological, and optical, were explored through X-ray diffraction (XRD), Fourier transforms
infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectra (DRS), field-emission scanning electron microscope
(FESEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy (HRTEM), and zeta
potential techniques. These results indicated that the as-synthesized NPs revealed a pseudo-spherical shape with a size of
43 nm. Moreover, as-prepared NPs were subjected to anticancer performance against HeLa cancer cell lines using MTT
assays. In addition, the antioxidant efficacy of biosynthesized CeVO4 NPs was scrutinized using DPPH and ABTS assays.
Therefore, our study presents a facile, safe, cheap, rapid, and greener approach for producing CeVO4 NPs and opening a new
door for clinical applications.
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Graphical Abstract

This investigation reports an eco-benevolent fabrication of cerium vanadate nanoparticles (CeVO4 NPs) for the first time by
an entirely green chemistry approach using Azadirachta indica leaves extract as a natural fuel. The physicochemical
characteristics of the as-prepared CeVO4 NPs, such as structural, topological, and optical, were explored through XRD,
FTIR, UV-DRS, FESEM-EDX, HRTEM, and zeta potential techniques. Moreover, as-synthesized NPs were subjected to
anticancer performance against HeLa cancer cell lines and antioxidant efficacy using DPPH and ABTS assays. Therefore,
our study presents a facile, safe, affordable, swift and greener approach for producing CeVO4 NPs and opening a new door
for clinical applications.

Keywords Green synthesis ● Cerium orthovanadate nanoparticles ● Azadirachta indica ● Anticancer activity ● Antioxidant
efficacy

Highlights
● First-time synthesis of CeVO4 nanoparticles using Azadirachta indica leaves extract through a green chemistry approach.
● Textural properties of CeVO4 nanoparticles were revealed through XRD, FTIR, UVDRS, FESEM, EDX-mapping,

HRTEM-SAED, and zeta potential techniques.
● The as-synthesized CeVO4 nanoparticles evinced a pseudo-spherical shape with a size of 43 nm.
● Greenly produced CeVO4 nanoparticles exhibited excellent anticancer (HeLa cell line) and antioxidant (DPPH & ABTS

assays) potentials.

1 Introduction

The advent of modern nanotechnology has built splendid
advancements in science and technology [1–4]. Nowadays,
nanomaterial (NMs) provides a plethora of applications due to
their textural properties, and they have often been a trending
topic in the multidisciplinary field of sciences [5–7]. There-
fore, numerous research groups connected to nanotechnology
have expanded rapidly due to their diverse uses in electronics,
medicines, defense, optoelectronics, energy, catalysis, sen-
sors, and environmental remediation [8–10]. Also, NMs
possess unique, controllable chemical and physical char-
acteristics, which gives them plenty of significance in the
biomedical and pharmaceutical industries [10–12]. Using
newer NMs is viable for overcoming therapeutic resistance,
such as malignancy and multidrug resistance [13]. Due to the
escalating incidence of ailments and resulting financial

burdens, many diseases cause challenges for global health
[14–16]. Novel NMs are becoming more popular for biolo-
gical applications to solve this worldwide dilemma [17, 18].
Because they have a larger surface-to-volume ratio than tra-
ditional materials, nanoparticles (NPs) provide a chance to
combat cancer and infections [19, 20]. Amongst all the NMs,
metal oxide NPs has shown great efficiency in their anticancer
activities [9, 21, 22].

Recently, rare earth orthovanadate (RVO4) has been
implemented in diverse uses such as energy storage devices,
sensors, optoelectronic devices, catalysis, biomedicines,
semiconductors, textiles, and ceramics because of their
splendid physicochemical characteristics [23–27]. Amidst
them, cerium orthovanadate (CeVO4) is semiconductor-
based vanadate and has a tetragonal (zircon) type structure
with space group I41/amd [28, 29]. In addition, CeVO4 have
snatched a plethora of interest due to its impressive optical,
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electrical, and catalytic functionalities [25, 30, 31]. There-
fore, CeVO4 is extensively employed in myriad applica-
tions, including supercapacitors, solar cells, electrodes,
hydrogen storage devices, sensors, and catalysts
[25, 32–34]. Moreover, CeVO4 NPs has been studied as an
antimicrobial agent in our previous works [29, 35]. Hence,
contemplating the merits of these CeVO4 NPs, many
researchers have reported several synthetic approaches
based on diverse techniques (as mentioned in Table 1),
namely hydrothermal, ultrasonic, co-precipitation, micro-
wave radiation, sol-gel, precipitation, solvothermal, sono-
chemical, and electrospinning techniques [25].
Unfortunately, these methods negatively impact the envir-
onment since they require more time and energy, expen-
siveness, employ dangerous chemicals like solvents and
stabilizing agents, and have problems with residue disposal,
despite producing sufficient yields. Therefore, the research
objective has recently shifted towards developing simple,
one-pot, clean, facile, affordable, and environmentally
acceptable synthesis protocols by using non-noxious
reagents and solvents under benign circumstances to pro-
duce the required NPs [36, 37].

Amongst several medicinal plants, Azadirachta indica,
an evergreen and versatile medicinal plant of the family
Meliaceae, appears in tropical and semitropical countries
of the globe [38]. It is applied as a traditional ayurvedic
medicine to cure a plethora of diseases all over the world
[39]. Since more than 4000 years ago, almost all parts of
this marvelous tree have been employed as phytomedi-
cines [40]. Diverse parts of this astounding tree were
employed to cure headaches, pyrexia, respiratory dis-
orders, ulcer, diabetes, cancer, leprosy, chicken pox,
dengue, malaria, and dermal complications [41]. There-
fore, this tree is prevalent for its pharmacological proper-
ties such as antifertility, hypolipidemic, antidiabetic,
microbicidal, hepatoprotective, anti‐inflammatory, hypo-
glycemic, antipyretic, nematicidal, insecticidal, anti-
oxidant, antiulcer, cardioprotective, neuroprotective, and
antileishmaniasis activities [38]. Such therapeutic uses
may be observed due to the various active biomolecules
(Fig. 1) of Azadirachta indica, namely, azadirachitin,
sugiol, gedunin, mahmoodin, lupeol, nimbiol, nimbin,
odoratone and (-)-epicatechin [38, 42].

To the best of our knowledge, Azadirachta indica leaves
extract for the green production of CeVO4 NPs has yet to be
reported. Therefore, our study discloses for the first time the
utterly green synthesis of CeVO4 NPs utilizing Azadirachta
indica leaves extract as a green fuel without needing any
other chemical reagents. The textural characteristics of the
greenly produced CeVO4 NPs were explored through XRD,
FTIR, UV-DRS, FESEM, EDX, HRTEM, and zeta poten-
tial analyses. Furthermore, CeVO4 NPs were studied for
their anticancer and antioxidant performance.

2 Materials and methods

2.1 Materials

Ammonium ceric nitrate [(NH4)2Ce(NO3)6, 99%] and
ammonium metavanadate (NH4VO3, 99%) were purchased
from SRL Chem, India. Healthy leaves of Azadirachta
indica were acquired from our college campus, Silvassa, UT
of DD & DNH, India. Before starting the experimental
work, the glassware was carefully rinsed with acetone and
deionized water and then dried in a hot oven.

2.2 Preparation of leaves extract

Healthy leaves of Azadirachta indica were carefully rinsed
with distilled water (dH2O) to detach dust particles and
snipped into small pieces using a scissor. The 250 mL
beaker comprising 5 g of tiny pieces of leaves with 100 mL
dH2O was heated at 90 °C for 25 min. Obtained leaves
extract was filtered twice through Whatman filter paper and
stored at 4 °C temperature for further work.

2.3 Green synthesis of CeVO4 NPs Azadirachta indica
using leaves extract

The metal precursors, ammonium ceric nitrate and
ammonium metavanadate were employed to synthesize
CeVO4 NPs through a green chemistry approach. The 1:1
ratio of ammonium ceric nitrate and ammonium metava-
nadate was mixed with 25 mL of dH2O with constant
stirring. Further, 5 mL of Azadirachta indica leaves
extract was poured drop by drop to a solution of ammo-
nium ceric nitrate and ammonium metavanadate at room
temperature (RT); stirring the reaction mixture was con-
tinued for the next 30 min upon addition of leaves extract
is over. The reaction solution was dried in a hot oven, and
the resultant powder was calcined at 600 °C for 3 h in a
muffle furnace. The powder of CeVO4 NPs was finally
collected and stored in an airtight Eppendorf at RT for
further study.

2.4 Instrumental techniques

Assorted characterization techniques were revealed to
study the physicochemical features of biogenically syn-
thesized CeVO4 NPs. X-ray diffractometer (XRD, Bruker
Advanced D8) was utilized to study the crystallographic
formation of NPs. The Fourier transform infrared (FTIR)
spectrometer (FTIR, Jasco-4600 Type A) model was
applied to identify the functional groups of the NPs. With
the aid of the UV-visible absorption spectrum, the sam-
ple’s absorbance was estimated (UV–vis, Shimadzu-DRS-
2600). The topologies were studied by field emission
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scanning electron microscopy (FESEM, Carl Zeiss Model
Supra 55) coupled with-energy dispersive X-ray spectro-
scopy (EDX) for elemental analysis. The size, topology,
and polycrystallinity of NPs were observed using a high-
resolution transmission electron microscope (HRTEM,
JEOL JEM 2100) combined with a selected area electron
diffraction (SAED) pattern. The HORIBA zeta analyzer
measured the zeta potential as as-synthesized NPs.

2.5 Anticancer activity using MTT asaay

As previously reported, the anticancer effect of greenly
produced CeVO4 NPs against HeLa cancer cells was
assessed through an MTT assay [43, 44]. In short, a 96-well
plate comprising DMEM/RPMI raised with 10% FBS,
penicillin (100 IU/mL), and streptomycin (100 g/mL) was
cultured with 50,000 cells/well. The plate was incubated at
37 °C for 24 h in a CO2 incubator with 5% CO2 and a humid
atmosphere. The consumed content was replaced with a
fresh medium with different CeVO4 NPs concentrations to
check cytotoxicity effectiveness. The plate was placed back
into the incubator for 24 h under the same culture envir-
onments. Following that, each well received 100 µL of the
MTT solution, which was then incubated at 37 °C for 4 h.

After incubation, media were gradually decanted, and each
well received 100 µL of DMSO to dissolve the insoluble
formazan crystals. After 15 min of constant shaking, the
plate was placed in a microplate reader to determine the
absorbance solution at 570 nm. Untreated (without invol-
ving CeVO4 NPs) sets were considered control conducted
concurrently under the same parameters. The accompanying
equation was implemented to determine the viability per-
centage:

%Viability ¼A570 of treated sample
A570 of control

� 100

2.6 Antioxidant efficacy

To investigate the antioxidant performance of greenly
produced CeVO4 NPs, the DPPH and ABTS assay was
employed to evaluate the free radical scavenging capacity.
The whole protocol for the antioxidant study of both
assays was described in our earlier study [43, 45]. The
experiment applied diverse concentrations (10–50 μg/mL)
of CeVO4 NPs, and ascorbic acid was kept as a positive
control. The scavenging efficiency of DPPH and ABTS
assays was ascertained using the equation below as

Fig. 1 Major active
biomolecules of Azadirachta
indica extract
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follows:

Scavenging capacity %ð Þ ¼ OD blankð Þ � OD sampleð Þ
OD blankð Þ � 100

3 Results and discussion

3.1 XRD analysis

The phase formation, purity, and crystallinity of the as-
fabricated Azadirachta indica-assisted CeVO4 NPs were
characterized using the XRD technique. The result of the
XRD profile is displayed in Fig. 2a. X-ray diffraction signals
matched perfectly with the tetragonal (zircon) type CeVO4

structure in accordance with ICDD card no. 12-0757 [29].
The prominent diffraction peaks were obtained at 2θ values
of 24.25°, 30.43°, 32.44°, 34.46°, 39.13°, 43.66°, 47.95°,
40.47°, 55.77°, 60.44°, 62.57°, 67.88°, and 71.15° corre-
sponding to the (200), (211), (112), (220), (301), (103),
(312), (400), (420), (332), (204), (224), and (512), diffraction
planes, respectively. Peaks corresponding to impurities or
other phases were not discerned, implying the purity of the
as-synthesized CeVO4 NPs. The characteristic sharp peaks
ascertained the high crystallinity of the sample. Further, the
median size of the CeVO4 NPs was ascertained using
Scherer’s equation [46] and was observed to be 43 nm.

3.2 FTIR study

The FTIR spectrum of the as-synthesized CeVO4 NPs was
achieved in the scanning range of 400 to 4000 cm−1.

Moreover, the result has been presented in Fig. 2b. The
FTIR data of these CeVO4 NPs indicated the presence of
two strong bands at 760 and 445.5 cm−1, which may be
associated with the stretching vibrations of V-O and VO4,
respectively [47]. Other shallow bands were also
detected, but their transmittance intensities were not
promising.

3.3 UV-Vis analysis

The optical absorption of the as-fabricated CeVO4 NPs was
assessed using the UV-Vis technique, wherein the absor-
bance was acquired in the scanning range of 200 to 800 nm.
The as-obtained UV-Vis absorption plot has been illustrated
in Fig. 2c.

It may be noticed from the given absorbance plot that a
strong absorption band was obtained at 258 nm with a
shoulder band at 296 nm. These prominent bands may be
connected to the UV-absorption characteristic of VO4

3-

[47]. The appearance of these bands may further be
ascribed to the charge migration from the oxygen ligands
to the inner vanadium atoms inside the VO4

3- lusters of
CeVO4 [48, 49]. Additionally, an expansive absorption
peak ranging from 340 to 800 nm implies the UV-visible
radiation absorption ability of the as-prepared CeVO4 NPs.
The inset of Fig. 2d represents the Tauc plot used to
ascertain the effective band gap energy of the as-
synthesized CeVO4 NPs. From this plot of (ahʋ)2 versus
hʋ, the band gap energy was calculated by extrapolating
the linear part of the curve to the energy axis and was
found to be 3.43 eV.

Fig. 2 a XRD spectrum of
Azadirachta indica-mediated
CeVO4 NPs, b FTIR spectrum
of Azadirachta indica-mediated
biosynthesized CeVO4 NPs,
c UV-Vis spectrum of
Azadirachta indica-mediated
biosynthesized CeVO4 NPs, and
d The corresponding Tauc plot
for band gap determination
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3.4 FESEM and EDX study

The morphological natures of the as-synthesized CeVO4 NPs
were scrutinized via a FESEM study. Figure 3a and b show
the FESEM micrographs of CeVO4 NPs at magnifications of
1 µm and 200 nm, respectively. These FESEM images clearly
depict that the particles do not have a specific morphology
but are largely irregular in shape. Nevertheless, the particles
are monodisperse with similar particle sizes. Monodispersity
in particle size has confirmed the functionality of Azadir-
achta indica as a promising reducing and capping constituent
for producing uniformity in particle size.

Figure 3c reveals the EDX results of CeVO4 NPs with
the in-set representing the elemental composition. From this
spectrum as well as the table for elemental composition, it is
clear that the as-synthesized CeVO4 NPs are composed of
Ce, V, and O with no other impurity elements. Figure 3d
represents the EDX mapping of the elements, confirming
that all the elements are present in conjugation. Further-
more, from the EDX data, a CeVO3 stoichiometry has been
formed instead of a CeVO4 stoichiometry. Akhavan et al.
[50] have reported that plant phytochemicals such as
polyphenols serve a crucial function in the antioxidant
property of NPs. Hence, the oxygen deficiency observed in
this case may be attributed to the antioxidant activity of the
Azadirachta indica phytochemicals used for the biosynth-
esis of CeVO4 NPs in this study.

3.5 HRTEM analysis

To analyze the microstructure of the as-synthesized sample,
the HRTEM technique was employed. The data of the

HRTEM investigation are displayed in Fig. 4. The TEM
images of CeVO4 given in Fig. 4a and b clearly indicate that
the particles so-formed are not exactly spherical in shape
but very close to sphere morphology; hence, the particles
resemble pseudo-spheres. The monodispersity of the parti-
cles may also be observed with little agglomeration sites.
The average particle size was calculated and was observed
to be 28.15 nm. Figure 4c represents the HRTEM picture of
the as-synthesized CeVO4 NPs. This information was used
to analyze the value of lattice (d) spacing by measuring the
distance between the lattice fringes. The value of d-spacing
was found to be 0.38 nm (or 3.8 Å), corresponding to the
(200) plane of CeVO4 NPs. From the SAED pattern pre-
sented in Fig. 4d, the polycrystalline appearance of the
CeVO4 NPs was detected.

3.6 Zeta potential

The exact surface charge and stability of the as-synthesized
CeVO4 NPs were determined through zeta potential mea-
surement (Fig. 5) and were found to be −20.4 mV. This
implies that the surface of CeVO4 NPs is negatively
charged. Moreover, the zeta potential distribution has just
one peak, which reveals that CeVO4 NPs are highly
uniform.

3.7 Anticancer performance of CeVO4 NPs

The anticancer potential of synthesized CeVO4 NPs using a
leaves extract of Azadirachta indica was studied against the
HeLa cell line. The HeLa cell line exposed to CeVO4 NPs
showed significant viability and proliferation inhibition of

Fig. 3 FESEM images of
CeVO4 NPs at magnifications of
a 1 µm, and b 200 nm, c EDX
spectrum, and d EDX mapping
of CeVO4 NPs
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the cell line. Results indicated that the viability of cells
reduced at increasing NPs concentration (Fig. 6). Using
confocal microscopy, morphological changes that demon-
strated cell shrinkage at various doses of CeVO4 NPs
compared to the positive control were observed. The cyto-
toxicity assay observations are displayed in Fig. 7. In the
present study, the results reveal that the influence of the
treatments is dose-reliant because the cells were 36.56%
inhibited at a concentration of 500 µg/mL of CeVO4 NPs
due to the selective binding to cancer cell surfaces [51].
However, Doxorubicin inhibited 66.49% of cells at the
same concentration. Moreover, as-synthesized CeVO4 NPs
exhibited an IC50 value at 89.15 μg/mL, signifying a con-
siderable cytotoxic activity against HeLa cell lines, while
Doxorubicin exhibited an IC50 at 53.55 µg/mL. According
to the literature, some of the greenly synthesized BiVO4

NPs [52] have been explored for anticancer efficacy in a
dose-dependent manner, but CeVO4 NPs have not been
reported yet for anticancer activity. Therefore, the present
work has highlighted the cytotoxic efficacy of CeVO4 NPs
against HeLa cancer cell lines.

3.8 Antioxidant efficacies

DPPH and ABTS free radical scavenging assays were applied
to ascertain the CeVO4 NPs antioxidant performance. The
ability to scavenge free radicals is observed to be excellent.

Fig. 5 Zeta potential distribution of Azadirachta indica-mediated bio-
fabricated CeVO4 NPs

Fig. 6 Anticancer potential of CeVO4 NPs against HeLa cell line

Fig. 4 TEM pictures of CeVO4

NPs at magnifications of
a 100 nm, and b 50 nm,
c HRTEM image at a
magnification of 10 nm, and
d SAED image
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The percent scavenging of CeVO4 NPs was determined to be
71.03 and 85.65% at the maximum tested concentration of
50 µg/mL for DPPH and ABTS assay. It exponentially
decreased when the concentration was lowered below 50 µg/
mL. Based on the findings, the IC50 values for CeVO4 NPs
capacities to scavenge DPPH and ABTS are 119 and
264.1 µg/mL, respectively. However, positive control (ascor-
bic acid) displayed IC50 at 93.42 and 122.6 µg/mL at the same
concentration. Overall, it can be noticed that the antioxidant
potential is dose-dependent and considerable. Figure 8 (a-
DPPH, b- ABTS) shows the results of the antioxidant study.
However, according to the literature, several orthovanadate
and cerium-based NPs have been studied extensively for their
antioxidant ability [53–56]. Thus, these antioxidant NPs could
be used for cutting-edge ischemia-reperfusion injury diag-
noses and treatments [57].

4 Conclusion

In summary, the present study has explored the simple, rapid,
economically viable, and environmentally benign approach
for synthesizing CeVO4 NPs using leaves extract of Aza-
dirachta indica as a natural fuel. The textural properties of
the as-fabricated CeVO4 NPs were studied extensively
through a diverse characterization tool. The XRD data
revealed the tetragonal (zircon) type structure of the NPs. The
HRTEM analysis displayed the pseudo-spherical shape of the
NPs. Moreover, as-synthesized NPs considerably inhibited
the proliferation of the HeLa cell line using MTT assay.
Additionally, the noteworthy antioxidant potential of CeVO4

NPs was noticed. Both anticancer and antioxidant studies
displayed concentration-dependent performance. Hence, the
greenly produced CeVO4 NPs could be potential candidates
for biomedical applications in the future.
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