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ABSTRACT 
Cervical cancer (CC) is the most frequent cancer in the female population worldwide. Although there 
are treatments available, they are ineffective and cause adverse effects. 6-gingerol is an active compo-
nent in ginger with anticancer activity. This research aims to discover the mechanism by which 6-gin-
gerol act as an anticancer agent on CC through a pharmacological network using bioinformatics 
databases. From MalaCard, Swiss Target Prediction, Comparative Toxicogenomics Database, and 
Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, we obtained the 
target genes for 6-gingerol and CC and matched them. We got 26 genes and analyzed them in 
ShinyGO-0.76.3 and DAVID-Bioinformatics Resources. Then, we generated a protein-protein interaction 
network in Cytoscape and obtained 12 hub genes. Hub genes were analyzed in Gene Expression 
Profiling Interactive Analysis and TISIDB. In addition, molecular docking studies were performed 
between target proteins with 6-gingerol using SwissDock database. Finally, molecular dynamics studies 
for three proteins with the lowest interaction energy were implemented using Gromacs software. 
According to gene ontology results, 6-gingerol is involved in processes of apoptosis, cell cycle, and 
protein kinase complexes, affecting mitochondria and pathways related to HPV infection. CTNNB1 
gene was negatively correlated with CD8þ infiltration but was not associated with a higher survival 
rate. Furthermore, the molecular docking study showed that 6-gingerol has a high binding to proteins, 
and the molecular dynamics showed a stable interaction of 6-gingerol to AKT1, CCNB1, and CTNNB1 
proteins. Conclusion, our work helps to understand the anticancer activity of 6-gingerol in CC that 
should be studied experimentally.
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Introduction

Cervical cancer (CC) continues to be today one of the main 
causes of female death worldwide, especially in less devel-
oped countries with deficiencies in the application of control 
and prevention measures to prevent (Zhang et al., 2020). The 
main risk factor for the development of CC is infection by 
oncogenic human papillomavirus (HPV). HPV causes lesions 
that, in most patients, usually disappear after a few months 
due to the intervention of the immune system. Still, in some 
patients, the lesions prevail and lead to the development of 
CC (Malik et al., 2023; Zhang et al., 2020).

According to the Global Cancer Observatory (GLOBOCAN), 
for 2020, it was reported that CC presented an incidence of 
6.5% of newly reported cases and caused 7.7% of deaths in 
women worldwide (Sung et al., 2021). The most effective 
route to prevent the development of this disease is vaccin-
ation against HPV and early detection of precancerous 
lesions with the Papanicolaou test (McGraw & Ferrante, 

2014). Once this disease is diagnosed, the treatments usually 
include surgery, radiotherapy, chemotherapy, or a combin-
ation. These treatments often cause life-threatening side 
effects in patients and often cause problems in other parts 
of the body (Wipperman et al., 2018). Currently, the natural 
components of plants have been proposed as effective anti-
cancer agents without generating side effects (G€okalp, 2021; 
He et al., 2021).

Ginger (Zingiber officinale) is a plant known for its medi-
cinal properties due to its antioxidant, anti-inflammatory, 
antimicrobial, and anticancer properties and its effect on pre-
venting and controlling cardiovascular, neurodegenerative, 
respiratory, and respiratory diseases, obesity, and diabetes 
mellitus (Mao et al., 2019). Various components have been 
identified in ginger, the most important being gingerols, par-
adols, and shogoals. 6-gingerol is fresh ginger’s most impor-
tant functional component, with solid anticancer potential, 
but its mechanism of action is poorly understood (Zivarpour 
et al., 2021).
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According to an in vivo study with mice and in vitro using 
HeLa cells by Rastogi et al., the administration of 6-gingerol 
effectively inhibited cell proliferation by activating apoptosis 
mechanisms and suggested that this compound may help 
control and progression of CC. In addition, they demon-
strated that combining 6-gingerol with cytoplastin increases 
oxidative stress and DNA damage and stimulates cancer cell 
death, supporting the therapeutic effect of cisplatin (Rastogi 
et al., 2015). Similarly, Kapoor et al., 2016 demonstrated that 
6-gingerol generated cytotoxicity in the HeLa cell line and 
arrest of the G2 phase of the cell cycle. Furthermore, it was 
suggested that administration of 6-gingerol alone or com-
bined with PI-3K inhibitor and cisplatin may provide better 
therapeutic effects for CC.

Currently, pharmacological network studies use computer 
databases to establish the protein-compound/disease-gene 
interaction to elucidate the mechanism of action of mole-
cules with potentially medicinal effects. These strategies 
identify therapeutic targets matched with genes or proteins 
expressed in a specific disease, and protein-protein inter-
action networks of key molecules are generated to find hub 
genes. The results are validated by molecular docking and 
molecular dynamics to later give way to in vitro and in vivo 
experimental studies (Noor et al., 2022; Yuan et al., 2022). 
Therefore, this research aims to characterize the molecular 
mechanism of 6-gingerol in CC from a pharmacological net-
work strategy using informatics tools. Figure 1 shows the 
general flow of the bioinformatics analyses performed.

Methodology

Data collection

From the PubChem website (https://pubchem.ncbi.nlm.nih. 
gov/compound/969516), the chemical structure and SMILES 
(simplified molecular input line entry specification) of 6-gin-
gerol were obtained (Kim, 2021). Subsequently, we got the 
molecular targets for 6-gingerol for ‘homo sapiens’ from the 
databases Swiss Target Prediction (http://www.swisstargetpre-
diction.ch/) (Daina et al., 2019), Comparative Toxicogenomics 
(http://ctdbase.org/) (Davis et al., 2023), and Traditional 
Chinese Medicine Systems Pharmacology Database and 
Analysis Platform databases (TCMSP) (https://tcmsp-e.com/ 
tcmsp.php) (Ru et al., 2014). Then, genes associated with CC 
were obtained from the MalaCards database, ‘The human dis-
ease database’ (https://www.malacards.org/). Finally, the inter-
section between the 6-gingerol targets and the CC target 
genes was obtained and visualized using the Venny 2.1.0 plat-
form (https://bioinfogp.cnb.csic.es/tools/venny/).

Gene ontology and pathway enrichment analyses

The 26 common genes between CC and 6-gingerol thera-
peutic targets were analyzed in the Shiny GO 0.76.3 database 
(http://bioinformatics.sdstate.edu/go/) to perform Gene 
Ontology enrichment analysis (GO), including analysis of 
Biological Processes (BP), Molecular Functions (MF) and 
Cellular Components (CCs) (Ge et al., 2020). In addition, the 

metabolic pathway enrichment was obtained from the 
DAVID database (https://david.ncifcrf.gov/tools.jsp) (Sherman 
et al., 2022). The cut-off criterion with an FDR <0.05 was 
taken into account.

Protein-protein interaction network analysis

Subsequently, the list of proteins was analyzed in the 
Cytoscape v3.9.1 software. The STRING network file was 
downloaded to generate a protein-protein interaction net-
work (PPI) and determine the degree of connectivity 
between proteins and known hub genes (Doncheva et al., 
2019). We take into account a confidence limit (score) of 0.4 
for the analysis.

Survival curve and correlation analysis between hub 
genes and immune cell infiltration

We used the GEPIA2 database (http://gepia2.cancer-pku.cn/ 
#index) to analyze the survival curves of the hub genes in 
Cervical and endocervical cancers (CESC) (Tang et al., 2019). 
A 95% confidence interval was used for the analysis. In add-
ition, we analyzed hub genes for immune cell infiltration on 
CESC using the TISIDB database (http://cis.hku.hk/TISIDB/ 
search.php) (Ru et al., 2019). Correlations equal to or greater 
than 0.300 were considered significant.

Molecular docking

Before we performed the molecular docking between 6- 
gingerol and the target proteins (Table 2), the PDB files of 
the proteins were downloaded from the Research 
Collaboratory for Structural Bioinformatics (https://www.rcsb. 
org/) and AlphaFold Protein Structure Database (https:// 
alphafold.ebi.ac.uk/) (Rose et al., 2021; Varadi et al., 2022). 
From the PubChem database (https://pubchem.ncbi.nlm.nih. 
gov) (Kim, 2021), the SDF file of the 6-gingerol structure was 
converted to the mol2 format with the OpenBabel software. 
Finally, the molecular docking was executed in the Swiss 
Institute of Bioinformatics database (http://www.swissdock. 
ch/) (The SIB Swiss Institute of Bioinformatics’ resources: 
Focus on curated databases 2016), the result was visualized 
in the UCSF Chimera software and BIOVIA Discovery Studio 
(Huang et al., 2014; Sa et al., 2022).

Molecular dynamics

Molecular dynamics tests were performed to evaluate the 
stability of 3 ligand-receptor complexes that resulted from 
the molecular docking tests and presented the lowest cou-
pling energy. The charm-gui platform was used to prepare 
the different inputs, and the Gromacs 2021.1 software for 
molecular dynamics (Abraham et al., 2015; Jo et al., 2008; 
Lindahl et al., 2021). Each protein was preprocessed using 
the PDB reading tool (Jo et al., 2014). On the other hand, the 
docking ligand was changed to the mol2 format using 
OpenBabel (O’Boyle et al., 2011). The .mol2 file of the ligand 
was loaded into the Ligand Reader & Modeler tool to 
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generate the topology and parameter files (Kim et al., 2017). 
The ligand-receptor complexes were integrated into a single 
.pdb file that will be used in the ‘Solution Builder’ tool to 
create the system used as input for Gromacs (Lee et al., 
2016). The water box was cubic, conforming to the size of 
the protein, and had an edge distance of 10 Å. Each system 

was neutralized using KCl ions placed by the Monte-Carlo 
method at a concentration of 0.15 M. Each system underwent 
5000 steeper decay energy minimization steps to remove the 
steric overlap. Subsequently, all systems were subjected to a 
NVT (constant number of particles, volume, and temperature) 
equilibrium phase for 125,000 steps, using the V-rescale 

Figure 1. General flow of bioinformatics analysis.
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temperature coupling method, with constant coupling of 
1 ps at 303.15 K (Bussi et al., 2007). Subsequently, molecular 
dynamics was performed for 100 ns using the CHARMM36m 
force field (Vanommeslaeghe et al., 2010). Gromacs utilities 
were used to evaluate the root mean square deviation 
(RMSD) of the complexes and hydrogen bonding. Data was 
plotted using the GRACE program.

Results

Target analysis of 6-Gingerol and CC

Figure 2(A) shows the structure of 6-gingerol obtained from 
PubChem. The 6-gingerol targets identified were 161 genes, 
while genes related to CC were 182. By matching the CC 
genes to the 6-gingerol targets (Figure 2(B)), 26 genes were 
selected as potential targets for the therapeutic effect of 6- 
gingerol on CC.

Analysis of gene ontology (GO) and metabolic pathways 
for overlapping targets

GO enrichment analysis of the 26 target genes showed that 
the important biological processes (BP) are related to the 
regulatory mechanisms of the cell cycle and apoptosis 
(Figure 3(A)). On the other hand, the cellular components 
(CCs) were related to mitochondria, protein kinase complex, 
outer organelle membrane, and transference complexes 
(Figure 3(B)). Molecular functions (MF) regulated protein kin-
ase activity and ubiquitination processes (Figure 3(C)). 
Regarding the analysis of metabolic routes, a relationship 
was shown between the processes of apoptosis and viral 
infections mainly (Table 1).

PPI network and key targets prediction

The main network obtained in STRING from Cytoscape pre-
sented 241 interactions between proteins (Figure 4), the 
nodes represent the target proteins, and the edges represent 
the interaction between the proteins. In addition, the 

proteins that presented more than 20 interactions were con-
sidered hub genes (Table 2).

Correlation analysis between hub genes and immune 
cell infiltration and survival curve

The results of the correlation analysis between hub genes 
and the infiltration of cells of the immune system indicated 
only a negative correlation between the expression of 
CTNNB1 and the infiltration of CD8þ lymphocytes on CESC 
(Supplementary Table 1). On the other hand, the survival 
analysis for CTNNB1 was not associated with the probability 
of survival (Figure 5). Similarly, the rest of the hub genes 
were unrelated to the likelihood of survival (data not 
revealed).

Molecular docking between 6-gingerol and target 
proteins

From the target proteins obtained from the PPI network 
(Table 2), we performed a molecular docking simulation 
with 6-gingerol. Figure 6 illustrates the results for the 12 
target proteins. DG< 0 suggests the possibility of spontan-
eous binding of 6-gingerol with proteins. The results 
showed that the DG of the 12 proteins was less than 0; this 
means that all the proteins spontaneously bind 6-gingerol 
(Figure 6).

Molecular dynamics of top 3 protein targets

Considering that the environment of the solvent and the 
flexibility of the protein are not taken into account for the 
analysis of molecular coupling. We verified the veracity of 
the coupling results for the three target proteins that 
obtained the lowest coupling energy. The proteins selected 
for the 100 ns molecular dynamics were AKT1, CCNB1, and 
CTNNB1. In Figure 7(A), the RMSD results are shown; the 
CCNB1 and CTNNB1 complexes show stability at 1 nm, and 
the ligand remains in the binding site with a stable 

Figure 2. 6-Gingerol and CC. (A) Chemical structure of 6-Gingerol in 2D; (B) Venn diagram of the macheted genes between CC and 6-Gingerol targets.
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interaction. On the other hand, the complex with the AKT1 
protein shows a movement at 25 ns that remains until the 
end of the molecular dynamics; this indicates that after the 
ligand combines with the protein, the conformation of the 
protein will not change significantly. On the other hand, 

Figure 7(B) shows the results of hydrogen bonding for lig-
and-protein interactions. The interactions vary during 
molecular dynamics, being CTNNB1, the complex that 
achieves the highest number of interactions that give high 
stability to the molecule.

Figure 3. GO enrichment analysis for targets gene (top 10). (A) Biological Process. (B) Component Cellular (C) Molecular Functions.
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Discussion

Pharmacological network studies allow us to understand the 
actions of natural compounds and their interactions with 
multiple targets. It helps us integrate information related to 
the interaction between biological molecules, signaling path-
ways and disease networks to understand the mechanisms 
of action of natural compounds (Sabarathinam et al., 2023; 
Sabarathinam & Ganamurali, 2023).

Currently, CC continues to be a public health problem 
worldwide, and although there are available treatments, 
these are usually ineffective and can generate undesirable 
effects on patients. Many active components of natural origin 
with anticancer capacity could be used to treat this disease 
without adverse consequences for patients. In this investiga-
tion, we elucidate the mechanism of action of 6-gingerol on 
CC through a pharmacological network approach using bio-
informatics databases. Our results confirm that 6-gingerol 
activates the mechanisms of cell apoptosis, we found 12 tar-
get genes in which 6-gingerol exerts its action, and we show 
that the proteins associated with these genes have a high 
probability of binding to 6-gingerol.

In this work, we found 26 differentially expressed genes in 
CC and 6-gingerol targets (Figure 2(B)). When we performed 
the analysis for GO, we found that the BP was mainly related 
to the mechanisms of cell apoptosis (Figure 3(A)). This find-
ing is consistent with that reported in previous research 

(Kapoor et al., 2016; Rastogi et al., 2015). On the other hand, 
CCs and MF that could be affected by 6-gingerol administra-
tion include Cyclin-dependent and Serine-threonine protein 
kinase (Figure 3(B,C)). These enzyme complexes are involved 
in cell survival, cell cycle progression, and cell growth 
(Bhullar et al., 2018; Łukasik et al., 2021). According to Wang 
et al., (2014), 6-gingerol inhibits the biosynthesis of Cyclin- 
dependent protein kinases essential for the transition of the 
G1 and G2 phases in the cell division processes.

Similarly, Luo et al., 2019 showed that 6-gingerol combined 
with the cytoplastin inhibited cell migration and invasion, 
decreasing the expressions of cyclin D1, AKT, and AKT-phos-
phorylated proteins in gastric cancer cells. On the other hand, 
another CCs implicated is the mitochondria. According to Sp 
et al., (2021), 6-gingerol causes an increase in mitochondrial 
reactive oxygen species (ROS) that leads to apoptosis due to 
an elevation in BAX, CYCS, and CASP9 and a decrease in the 
expression of BCL-2 in breast cancer cell lines.

On the other hand, the metabolic pathways affected in 
CC by 6-gingerol include apoptosis processes, p53 signaling 
pathways, and HPV infection (Table 1). These findings agree 
with what was reported by Rastogi et al., 2015; they demon-
strated that exposure to 6-gingerol inhibited cell proliferation 
and caused p53 activation, increased p21 levels, induced 
DNA damage and cell cycle arrest in the G2/M phase on 
HPV-positive CC cells. In addition, a previous computational 

Table 1. Top 10 of pathway enrichment analysis of key targets.

Term Genes FDR p-value

hsa04115:p53 signaling pathway CASP9, CDKN1A, CCNB1, CASP8, CASP3, MDM2, BCL2, CDK1, BAX, TNFRSF10B, BID 4.67E-14 5.31E-16
hsa05200:Pathways in cancer RB1, CDKN1A, CDKN1B, MMP2, PTGS2, MTOR, CASP9, CCNA2, CASP8, CASP3, MDM2,  

BCL2, BAX, BIRC5, AKT1, CTNNB1, BID
4.95E-14 1.12E-15

hsa01524:Platinum drug resistance CASP9, CDKN1A, CASP8, CASP3, MDM2, BCL2, BAX, BIRC5, AKT1, BID 1.66E-12 5.67E-14
hsa04210:Apoptosis CASP9, CASP8, PARP1, CASP3, BCL2, TNFSF10, BAX, TNFRSF10B, BIRC5, AKT1, BID 7.46E-12 3.39E-13
hsa05169:Epstein-Barr virus infection RB1, CASP9, CCNA2, CDKN1A, CDKN1B, CASP8, CASP3, MDM2, BCL2, BAX, AKT1, BID 7.69E-12 4.37E-13
hsa05163:Human cytomegalovirus infection RB1, CASP9, CDKN1A, CASP8, CASP3, MDM2, BAX, CTNNB1, AKT1, BID, PTGS2, MTOR 2.10E-11 1.43E-12
hsa05161:Hepatitis B RB1, CASP9, CCNA2, CDKN1A, CASP8, CASP3, BCL2, BAX, BIRC5, AKT1, BID 2.51E-11 1.99E-12
hsa05167:Kaposi sarcoma-associated  

herpesvirus infection
RB1, CASP9, CDKN1A, CASP8, CASP3, BAX, CTNNB1, AKT1, BID, PTGS2, MTOR 1.34E-10 1.22E-11

hsa05165:Human papillomavirus infection RB1, CCNA2, CDKN1A, CDKN1B, CASP8, CASP3, MDM2, BAX, CTNNB1,  
AKT1, PTGS2, MTOR

6.50E-10 9.60E-11

hsa05170:Human immunodeficiency virus 1 infection CASP9, CCNB1, CASP8, CASP3, BCL2, CDK1, BAX, AKT1, BID, MTOR 5.71E-09 9.73E-10

Table 2. Hub genes for overlapping targets.

Gene symbol Protein Functiona Degree

TP53 TP53-binding protein 1 DNA double-strand break repair protein 25
CASP3 Capase 3 Protein involved in the process of apoptosis 25
CASP8 Capase 8 Protein involved in the process of apoptosis 25
STAT3 Signal transducer and activator  

of transcription 3
Participates in the regulation of the cell cycle by inducing the expression of key genes for 

the progression from G1 to the S phase, such as CCND1
24

CASP9 Caspase 9 Protein involved in the process of apoptosis 24
AKT1 RAC-alfa serina/treonina-prote�ına quinasa Enzyme regulating processes including metabolism, proliferation, cell survival, growth, and 

angiogenesis
24

CCND1 G1/S-specific cyclin-D1 Phosphorylates and inhibits members of the retinoblastoma (RB) family of proteins, 
including RB1, and regulates the cell cycle during the G 1 /S transition

23

CCNB1 G2/mitotic-specific cyclin-B1 Protein for the control of the cell cycle at the G2/M 22
MDM2 E3 ubiquitin-protein ligase Mdm2 Inhibits cell cycle arrest and apoptosis mediated by p53/TP53 and p73/TP73 21
CTNNB1 Catenin beta-1 Protein regulates cell adhesion as a component of an E-cadherin: catenin adhesion 

complex. In addition, it participates in the negative regulation of centrosome cohesion
21

CDKN1A BRCA2 and CDKN1A-interacting protein Protein is required for the organization and anchoring activities of microtubules in 
interphase and is necessary for the organization and stabilization of the spindle pole in 
mitosis

21

MTOR Serine/threonine-protein kinase mTOR A central regulator of cell metabolism, growth, and survival in response to hormones, 
growth factors, nutrients, energy, and stress signals

20

aInformation is taken from the UniProt page (https://www.uniprot.org/).
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study demonstrated through simulations that 6-gingerol is 
an ideal drug candidate with antiviral activity due to inhibit-
ing the E6 protein mechanism for HPV-16 (Kharisma et al., 
2020).

From the PPI network, we found 12 hub genes (Table 2). 
We observed genes related to the processes of apoptosis 
TP53, CASP3, 8, and 9. As previously mentioned, 6-gingerol 
promotes cell death events by activating p53 (Rastogi et al., 
2015). In addition, 6-gingerol has been associated with 

activating caspase 3, 8, and 9, which attests to the induction 
of apoptotic cell death (Radhakrishnan et al., 2014). We also 
observed genes related to cell cycle control, including STAT3, 
CCND1, CCNB1, MDM2, CDKN1A, AKT1, and MTOR. According 
to Lin et al., (2012), 6-gingerol causes increases in p53, p27, 
and p21 with a decrease in cyclin B1, cyclin A, and CDK1 
leading to cell cycle arrest G2/M in the LoVo cell line. On the 
other hand, Xu et al., (2020) demonstrated that 6-gingerol 
causes G1 phase arrest through the AKT-GSK 3b-cyclin D1 
pathway in cell lines 786-O, 769-P, and ACHN. Similarly, Sp 
et al., (2021) observed that the administration of 6-gingerol 
caused the downregulation of CCND1 and CDKN1A. They 
demonstrated that 6-gingerol blocked the interaction of p53 
with its negative regulator E3 ubiquitin-protein ligase MDM2 
and suggested that 6-gingerol increases p53 expression by 
regulating EGFR/Src/STAT3 signaling in breast cancer cells. In 
addition, it was suggested that the anticancer activity of 6- 
gingerol is due to AMPK activation and inhibition of the 
AKT/mTOR signaling pathway in YD10B and Ca9-22 cell lines 
(Zhang et al., 2021).

Another of the target genes was CTNNB1, which codes for 
the b-catenin protein. It has recently been suggested that 
the dysregulation of this protein leads to the development 
of CC. It has been suggested as a potential prognostic 
marker and a drug target for cancer therapy (Wang et al., 
2020). According to Lee et al., (2008), 6-gingerol deregulates 
the b-catenin pathway. This causes downregulation of cyclin 
D1 expression resulting in cell cycle arrest in colorectal can-
cer cells and contributing to its anticancer activity. Therefore, 
these 12 target genes are involved in anticancer activity and 
have been little studied in CC.

Figure 4. PPI Principal network constructed with the match targets from STRING.

Figure 5. Survival curve of CTNNB1 in CESC.
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In this investigation, we analyzed the target genes (Table 
2) and their relationship with immune cell infiltration for 
CESC. The immune system cells are necessary to control 
tumor growth, and in the case of CC, the immune response 
is closely related to the HPV infection. Under this environ-
ment, the different cells of the immune system change dur-
ing cancer development (Guo & Hua, 2020). We found a 

negative correlation between the infiltration of CD8þ lym-
phocytes and the CTNNB1 gene. We previously mentioned 
that 6-gingerol was associated with b-catenin inhibition (Lee 
et al., 2008). Therefore, inhibiting b-catenin would increase 
the infiltration of CD8þ lymphocytes that can lyse HPV- 
infected cancer cells in patients with CC (Maskey et al., 2019; 
Santin et al., 1999). Furthermore, regarding the survival 

Figure 6. Interaction of 6-gingerol with proteinas targets. (A) TP53, DG=-7.18 kcal/mol; (B) CASP3, DG=-6.72 kcal/mol; (C) CASP8, DG=-6.97 kcal/mol; (D) STAT3, 
DG=-7.24 kcal/mol; (E) CASP9, DG=-6.75 kcal/mol; (F) AKT1, DG=-7.84 kcal/mol; (G) CCND1, DG=-7.15 kcal/mol; (H) CCNB1, DG=-7.33 kcal/mol; (I) MDM2, DG=- 
7.00 kcal/mol; (J) CTNNB1, DG=-8.11 kcal/mol; (K) CDKN1A, DG=-7.10 kcal/mol; (L) MTOR, DG=-7.24 kcal/mol.
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analysis, we did not observe a significant effect between a 
low expression of CTNNB1 related to a higher survival rate 
(Figure 5). However, since 6-gingerol is related to the deg-
radation of b-catenin, the administration could potentiate 
the effect and would mean an increase in the survival rate 
that should be confirmed experimentally.

On the other hand, the molecular docking results indi-
cated that 6-gingerol showed high binding activity to 12 tar-
get proteins (Figure 6). According to the literature, the lower 
coupling energy indicates a stronger affinity of the coupled 
complex (Zhang et al., 2022). Therefore, these proteins are 
drug targets for 6-gingerol. As previously stated, 6-gingerol 

acts on these targets, but they have been little studied 
in CC.

Subsequently, we verified the molecular docking results of 
the AKT1, CCNB1, and CTNNB1 proteins through molecular 
dynamics simulation. The results obtained for RMSD and 
hydrogen bonding (Figure 7(A,B)) indicated the stability of 6- 
gingerol with AKT1, CCNB1, and CTNNB1. Therefore, this 
work encourages future research to corroborate the informa-
tion obtained and complement it with exhaustive studies on 
pharmacokinetics in in vivo models. Although there are 
reports that have improved the bioavailability of 6-gingerol 
and have had a significant impact on the pharmacokinetic 

Figure 7. Molecular dynamics for AKT1, CCNB1, CTNNB1. (A) RMSD and (B) Hydrogen bonds.

Figure 8. Anticancer effect of 6-gingerol. 6-gingerol increases the concentrations of p53, causing the mitochondria to release cytochrome c and increase the 
expression of the apoptotic protein bax and ROS. Cytochrome c activates caspase 8 and 9 to activate effector caspase 3 and promote apoptosis of cervical cancer 
cells. On the other hand, 6-gingerol plays an important role in cell cycle arrest. 6-gingerol causes an inhibition of the EGFR receptor signaling Cascade that affects 
the expression of genes related to the cell cycle.
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profiles, more research is required in this area, toxicity stud-
ies and determination of the effective dose for the treatment 
of CC before administration in humans (Arcusa et al., 2022; 
Zivarpour et al., 2021). Finally, based on the information 
obtained in this investigation, in Figure 8, we propose the 
mechanism of action of 6-gingerol on CC.

Conclusion

This pharmacological network study demonstrated that the 
anticancer effect of 6-gingerol focuses on the induction of 
the cellular apoptosis mechanism, causes cell cycle arrest, 
and affects mitochondria. In addition, we show that the 
downregulation of the CTNNB1 gene by 6-gingerol leads to 
the infiltration of CD8þ lymphocytes that can destroy cancer 
cells. According to the molecular docking study we found 
that 6-gingerol binds highly to proteins related to hub 
genes. AKT1, CCNB1 and CTNNB1 proteins were subjected to 
molecular dynamics studies. The results showed that the 
interaction between 6-gingerol and protein was highly sta-
ble. This information indicates that these proteins are thera-
peutic targets for CC and future investigations should take 
into account the findings obtained for the development of 
experimental investigations.
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