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Abstract
In this work, we propose to the Raman spectroscopy as a new technique for the detection of the type 2 diabetes using blood
serum samples. The serum samples were obtained from 15 patients who were clinically diagnosed with type 2 diabetes
mellitus and 20 healthy volunteers. The average spectra showed equally intense peaks as, 695 cm−1, the doublet of tyrosine
at 828 and 853 cm−1, phenylalanine at 1002 and 1028 cm−1, the phospholipid shoulder at 1300–1345 cm−1, and proteins
(amide I) at 1654 cm−1. The major differences were found at 661 and 1404 cm−1 (glutathione), 714 (polysaccharides), 605
(Phe), 545 cm−1 (tryptophan), and the shoulder of amide III at 1230–1282 cm−1, where seem to disappear in the diabetes
spectrum. On the contrary, the region that is more highlighted due to that diabetes peaks are clearly more intense was
897–955 cm−1. Principal component analysis and linear discriminate analysis were employed for developing discrimination
method. The first three principal components provided a classification of the samples from healthy and diabetes patients with
high sensitivity and specificity. In addition, when the first principal component was plotted as a function of the Raman shift,
it revealed these shifts accounted for the greatest differences between control and diabetes samples, which coincided with
the shifts of spectral differences shown by mean spectra. Our results demonstrated that serum sample Raman spectroscopy
promises to become a non-invasive support tool of the currently applied techniques for type 2 diabetes detection, decreasing
the false-positive cases.
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Introduction

Diabetes is a chronic and progressive disease that occurs
either when the pancreas does not produce enough insulin,
a hormone that regulates blood sugar or glucose, or
when the body cannot effectively use the insulin it
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produces, increasing blood glucose levels. The World
Health Organization (WHO) recognizes three forms of
diabetes mellitus: type 1, type 2, and gestational diabetes
(occurs during pregnancy), each with different causes
and with different incidence [1, 2]. Type 1 diabetes is
characterized by deficient insulin production in the body,
due to the destruction of the β cells of the Islets of
Langerhans of the pancreas, and people who survive with
this diabetes requires insulin injections to regulate the
amount of glucose in their blood. In type 2 diabetes, the
body cannot properly use the insulin it produces.

In 2014, according to WHO, worldwide about 422
million adults were living with diabetes compared to 108
million in 1980 [1]. The global prevalence of diabetes has
nearly doubled since 1980, rising from 4.7 to 8.5% in
the adult population. Diabetes caused 1.5 million deaths
in 2012, being the percentage of deaths, attributable to
high blood glucose or diabetes that occurs prior to age
70, higher in low- and middle-income countries than in
high-income countries. Diabetes and its complications bring
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the Raman technique is implemented with gold and sil-
ver nanoparticles, a technique known as surface enhanced
Raman spectroscopy (SERS) technique [15, 16].

In this context, we propose in this article a new method
of type 2 diabetes detection based on serum sample
Raman spectroscopy and multivariate analyses. Firstly,
Raman spectra are classified using principal component
analysis (PCA) and as we know a priori how many groups
there are and which samples correspond to each group,
subsequently we applied linear discriminate analysis (LDA)
as a technique acting in a supervised manner. In PCA, the
positions of the main peaks, which are responsible for the
separation of the spectral data for the formation of groups
or clusters of data (data classification), can be calculated by
plotting the first principal components as a function of the
wavenumber [20]. These positions allow finding the most
relevant biochemical differences between the samples of the
control and diabetes patients. To the best of our knowledge,
this is the first report of preliminary results evaluating the
usefulness of Raman spectroscopy in the diagnosis of type
2 diabetes using serum samples.

Methodology

Samples

Fresh serum samples were obtained from 15 patients who
were clinically diagnosed with type 2 diabetes mellitus and
20 healthy volunteer controls. All patients were from the
western central region of Mexico and had similar ethnic
and socioeconomic backgrounds. The age for the diabetes
patients was between 40 and 65 years. The diabetes and
control serum samples were obtained through the Human
Ethical Committees of Mexican hospitals. Written consent
was obtained from the subjects and the study was conducted
according to the Declaration of Helsinki.

Blood samples were obtained between 7:00 and 9:00
A. M. and were centrifuged to get the serum. All spectra
were obtained on the same day. The samples were frozen
at −189 ◦C in a liquid nitrogen dewar before Raman
spectroscopy analysis was performed. To ensure statistically
sound sampling, five spectra from different regions of each
serum sample were collected. A total of 182 spectra were
collected with 102 spectra from 20 control patients, 80
spectra from diabetes patients.

Raman spectroscopy

All spectra were collected at a Jobin-Yvon LabRAM HR800
Raman Spectrometer with a laser wavelength of 830 nm.
A drop of serum was placed onto an aluminum substrate,
which was examined by an Olympus microscope coupled

about substantial economic loss to local health systems and
national economies, so that it has become a priority for
action by all countries.

The patient’s starting point to live well with diabetes
is early diagnosis, which is based on continuous measure-
ments of fasting plasma glucose concentration greater than
or equal to 126 mg/dL (7.0 mmol/L). At present, the chem-
ical test reagent strip read by a glucometer is the technique
used to measure blood glucose concentrations [3]. Never-
theless, patients will require periodic specialist evaluations,
treatment by complications, or sophisticated laboratory tests
to distinguish between type 1 and type 2 diabetes. There-
fore, there is considerable interest in developing both rapid,
less invasive, and objective methods for the diagnosis and
detection of diabetes and biochemical models that allow
understanding the molecular changes that give rise to the
disease.

In this sense, as an alternative to the conventional meth-
ods for the study of diabetes, the spectroscopic techniques
have been explored. Thereby, fluorescence spectroscopy
was used for discriminating between glycated and ungly-
cated albumin diabetes markers [4]. The Fourier-transform
infrared spectroscopy provided information of this impor-
tant glycated analyte when incubating albumin with glu-
cose [5, 6]. Rohleder et al. investigated serum samples
of diabetes patients using mid-infrared spectroscopy [7].
However in the infrared technique, water, present in large
proportions in the biological samples, shows a very com-
plex spectrum because it is very sensitive to the vibrations
and rotations of the water molecule [8]. In contrast, a spec-
troscopic technique not affected by the presence of water
molecules, due to taking advantage of the low absorption
coefficient of water in the near-infrared spectral region,
is the Raman spectroscopy [9]. Therefore, Raman spec-
troscopy is the best technique for studying body fluids
containing considerable amounts of water; furthermore that
in it, no sample preparation is required. Dingari et al.
used serum sample Raman spectroscopy and multivariate
classification techniques to differentiate glycated albumin
from the unglycated variant with 100% accuracy [10].
Raman spectroscopy detected minute amounts of glucose
in diluted urine, with a 92% accuracy to classify abnor-
mal and normal urine samples according to their glucose
concentrations [11].

In addition to the invaluable results in the characteri-
zation of samples related to diabetes, Raman spectroscopy
and multivariate analyses have impacted the detection of
other degenerative diseases such as cervical and breast
cancer using serum samples with high sensitivity and
specificity [12, 13]. Furthermore, monitoring of leukemia
chemotherapy treatment using Raman spectroscopy was
possible through the exclusive use of blood serum sam-
ples [14]. Cancer results are markedly improved when
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to the Raman system and several points were chosen for
Raman measurement with an exposure of 20 to 40 s. The
laser beam was focused on the surface of the sample with a
100× objective. The radius of the beam was 1.0 μm and the
laser power irradiation over the samples was 17 mW. The
Raman system was calibrated with a silicon semiconductor
using the Raman peak at 520 cm−1. All spectra were taken
collected in the region from 400 to 1800 cm−1, with a
resolution of 0.6 cm−1.

Data analysis

The average of Raman spectra taken per patients in control
and diabetes groups was 5.1 and 5.3, respectively. Raw
spectra were processed by carrying baseline correction,
smoothing, and normalization to remove noise, sample
florescence, and shot noise from cosmic rays, and then
analyzed using PCA [17]. After the initial processing,
the mean spectrum of each group was calculated. The
mean spectra were analyzed to obtain general biochemical
information for each data group [18, 19].

In order to apply the PCA, the matrix of spectra, built
with the 182 Raman spectra, was used to calculate the
covariance matrix, which in turn allowed decomposing
large spectral data into small number of independent
variations known as principal components (PCs) and whose
contributions are known as scores. Score of components
is one of the widely used parameters for classification. In
the plot of the first principal component, it is expected
to observe two large groups of points or spectra, groups
of spectra of the control and diabetes patients. To
guarantee maximum separability and therefore a more

precise definition of the groups obtained in the PCA, the
ratio of between-groups variance to the within-groups is
maximized (LDA method).

By analyzing the PCA result through the LDA applica-
tion, it is possible to count true-positive (TP) and false-
negative (FN) cases for calculating the sensitivity of the
method of diabetes diagnosis. Similarly, counting the true-
negative (TN) and false-positive (FP) cases, the specificity
of the method is calculated. Sensitivity and specificity are
used to judge diagnostic ability.

Finally, for a cross-check to the comparative analysis of
the average control and diabetes spectra, the loading vectors
are plotted as a function of the wavenumber by determining
the positions of relevant differences between groups of
patients.

PCA, LDA, and all the algorithms for data analysis were
implemented in MatLab commercial software.

Results

One hundred and eighty-two spectra were collected from 20
control and 15 type 2 diabetes serum samples.

Figure 1 shows the comparison of mean Raman spectra
from control and type 2 diabetes samples observing
significant differences. The control serum spectrum showed
the presence of higher amounts of carotenoids indicated by
peaks at 1002, 1160, and 1523 cm−1 and intense peaks
associated with protein components at 853, 938, 1002,
1300 to 1345, 1447, 1550, 1620, and 1654 cm−1. The
major differences between diabetes and control spectra
were observed with strong increases in the intensity of

Fig. 1 Mean Raman spectra of
control and diabetes serum
samples



1794 Lasers Med Sci (2018) 33:1791–1797

the bands 446 (glutathione), 897 (C-O-C str), 938 (protein
components), 955 (CH2 rock) cm−1, and minor increases at
1523 (β carotene), 1556 (Trp), 1587 (vibrational modes of
backbone and amino acid residues of proteins), 1603 (Tyr
and Phe), 1620 (Tyr, Trp and C = C str) cm−1 in diabetes
spectrum. Furthermore, strong decreases occurred at 622
(Phe) and 642 (C-S stretching vibration of Tyr) cm−1, and
minor decreases at 509, 1063 (Phe), 1083 (phospholipid),
1126 (protein and lipids), 1174 (Trp and Phe), 1208 (Trp),
and 1447 (lipids) cm−1 in diabetes spectrum. On the other
hand, unchanged peak at 695, 828 and 853 (Tyr), 1002 and
1028 (Phe), 1160 (β carotene), the phospholipid shoulder at
1300–1345 and 1654 (Amide I) cm−1 between control and
diabetes spectra. Finally, the bands at 545 (Trp), 605 (Phe),
661 and 1404 (glutathione), 714 (polysaccharides), 742
(phospholipid), and 1230–1282 (amide III) cm−1 seemed to
disappear in the diabetes spectrum.

Table 1 shows the main bands observed in the control and
type 2 diabetes spectra and the corresponding assignment
of biomolecules. The last column of this table specifies the
average spectra where the molecules are observed and that
allowed discriminating the spectrum of diabetes samples
from the spectrum of the control samples. The following
section shows the results obtained by the PCA method and
that determines those molecules that allowed discriminating
the diabetes samples from the control samples but based on
the analysis of all 182 spectra and not only of the two mean
spectra of the diabetes and control samples.

PCA results

Once the spectra of the serum samples are collected, the
next task is to analyze them as a whole, which can result
in an extremely complex task when dealing with spectra of
biological samples. For this reason, multivariate statistical
tools, such as PCA, artificial neural network (ANN), and
hierarchial cluster analysis (HCA), are often used to analyze
this type of spectrum.

In this study, spectra of all two classes of samples,
namely, control and diabetes, were pooled and analyzed by
PCA to obtain discrimination among the classes. Plot of
the first three principal components obtained in the region
400–1800 cm−1 is shown in Fig. 2.

We knew a priori how many groups there were and which
samples corresponded to each group. In Fig. 2, the blue dots
corresponded to the 102 spectra of the control patients and
the red dots corresponded to the 80 spectra of the diabetes
patients. We applied the multivariate technique, LDA, to our
PCA result as a technique acting in a supervised manner.
LDA identified the two most natural clusters in the total
of 182 spectra by defining in the space of the principal
component’s two well-localized zones (see Fig. 2). These
zones watched with the two large group of patients reported

Table 1 Main bands observed in control and type 2 diabetes serum
spectra and corresponding assignment of biomolecules

Bands Biomolecules Serum sample

(cm−1) where the

biomolecules appear

446 Glutathione Diabetes

509 Trp Diabetes, control

545 Trp Control

566 Diabetes

605 Phe Control

622 Phe Diabetes, control

642 Tyr Diabetes, control

C-S stretching

661 Glutathione Control

695 Diabetes, control

714 Polysaccharides Diabetes

742 Phospholipid Control

760 Trp Control
828 Try Diabetes, control
853 Try Diabetes, control
875 Trp Diabetes, control
897 C-O-C str Diabetes, control
938 Skeletal str α Diabetes, control
955 CH2 rock Control, control
1002 Phe Diabetes, control
1028 Phe Diabetes, control
1063 Phe Diabetes, control
1083 Phospholipid Diabetes, control

O-P-O and C-C
1103 Phe νs (C-C) Diabetes, control
1126 Protein, Diabetes, control

phospholipid C-C str
1160 β carotene Diabetes, control
1174 Trp, Phe Diabetes, control
1208 Trp Diabetes, control
1230–1282 Amide III Control
1300–1345 Trp, α helix, Diabetes, control

phospholipids
1404 Glutathione Control
1447 Phospholipid, Diabetes, control

C-H scissor in CH2
1523 β carotene Diabetes, control
1556 Trp Diabetes, control
1587 Protein, Tyr Diabetes, control
1603 Tyr, Phe Diabetes, control
1620 Tyr, Trp, C=C str Diabetes, control
1654 Proteins, amide I, Diabetes, control

α helix, phospholipids

by the diabetes specialist from the medical center, one zone
containing the blue points (control cluster) and another zone
containing the red points (diabetes cluster).
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Fig. 2 Scatter plot of control and type 2 diabetes serum samples

The number TN was determined by the number of blue
points (control spectra) fully contained in the zone defined
by our LDA as controls (left zone in Fig. 2), i.e., TN = 99. In
the same way, the number TP was determined by the number
of red dots (diabetes spectra) completely contained in the
right zone in Fig. 2 defined by our LDA as diabetes, i.e., TP
= 79. Only 1 of 80 spectra from diabetes serum samples was
misclassified as control (FP = 1) and 3 of 102 spectra from
control serum samples were misclassified as diabetes (FN =

3). Therefore, diagnostic specificity and sensitivity were 99
and 96%, respectively.

PCA was applied to discriminate between the Raman
spectra of serum from control and diabetes patients using
cross-validation. In cross-validation, the data was randomly
split into two sets, a training set and a test set. In this
approach, one sample (testing data) at a time was left out
and PCA was applied after data reduction. Ten components
for smoothing without baseline correction spectra and
twelve components for smoothing with baseline correction
spectra were considered for this analysis. In both cases,
we were able to observe the two large groups of spectra
as we obtained in Fig. 2. The sensitivity and specificity
for data with smoothing and baseline correction and for
smoothed data without baseline correction were 96 and
99%, respectively.

To bring out the differences in spectral profiles more
clearly, the positions of relevant difference spectra were
computed by plotting the first principal component as a
function of the wavenumber [20]. According to custom,
the principal differences between groups were represented
by peaks with higher intensity. Nevertheless, several of
these high peaks could be representing natural biochemical
differences among only control patients. In order to know
these natural differences, we plotted the first principal
component versus the wavenumber between the 102 control
spectra. Figure 3 shows control-control plots with the
position of the most relevant differences between the control
patients and control-diabetes plots with the position of the
most relevant differences between the control and diabetes
patients using only the first principal component, PC1.

Fig. 3 Plots of the first principal
component as a function of the
wavenumber. By discarding the
most intense peaks matching
between the Control-Control
and Control-Diabetes plots, we
obtain real biochemical
differences among the control
and type 2 diabetes serum
samples
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By discarding the most intense peaks matching between
the control-control and control-diabetes plots (as 509, 558,
592, 642, 747, 1002, 1310, 1565, 1654 cm−1, among
others), we obtained real biochemical differences among
the control and diabetes serum samples. These differences
appeared at 446, 451 (glutathione), 497 (Trp), 520, 566,
605 (Phe), 622 (Phe), 760 (Trp), 828 (glutathione), 853
(Phe), 1014 (glutathione), 1053, 1126 (protein), 1149, 1160
(β carotene), 1174 (Tyr), 1208 (Trp), 1274 (amide III),
1404 (glutathione), 1523 (β carotene), 1588 (protein, Tyr),
1602 (Tyr), 1620 (Tyr, Trp), and 1703 (glutathione) cm−1.
Other differences can be determined using the principal
components PC2 and PC3. As can be observed in Fig. 3, it
could be an alternate method for viewing the differences in
intensity observed by the loading vectors of PC1.

Discussion

Our preliminary study suggests that Raman spectroscopy
has the potential to be a non-invasive diagnostic tool of type
2 diabetes with high sensitivity and specificity. It requires
no sample preparation and provides objective, specific, and
fast results.

The Raman bands assigned to glutathione (661 and
1404 cm−1), tryptophan (545 cm−1), phenylalanine
(605 cm−1), polysaccharides (714 cm−1), phospholipid
(742 cm−1), and protein amide III (1230 − 1282 cm−1)
seemed to disappear in the diabetes spectrum whereas
that the 897–955 cm−1 region is highlighted since sev-
eral peaks of diabetes are clearly more intense suggesting
that these features may play a role in the type 2 diabetes
detection.

Raman spectroscopy and multivariate analyses were able
to differentiate between diabetes and control samples with
96% sensitivity and 99% specificity. The first three principal
components allowed observing two well-defined clusters of
spectra corresponding to the types of samples used in our
study. Therefore, a new patient can be diagnosed quickly
and with high probability, by simply observing the cluster
where his spectra fall. If the spectra fall into the diabetes
cluster, then the patient will be diagnosed as a diabetes
patient. In addition, these methods offer an alternative
way to the analysis of the average spectra to determine
the main biochemical differences between the control and
diabetes samples. Plot, PC1 vs Raman shift, showed that
the main peaks that generated the formation of the well-
defined clusters of control and diabetes spectra were in
agreement with the peaks obtained by directly observing
the average spectra. By analyzing the plots corresponding
to the components PC2 and PC3, other coincident and non-
coincident peaks between the control and diabetes spectra
can be determined.

Our study suggests, in analogy to the article reported by
Haka et al. [21] where it presents the first demonstration of
the in vivo collection of Raman spectra of breast tissue, that
it is possible to design an effective method of diagnosing
type 2 diabetes based on the collection of a large number
of Raman spectra of blood serum samples from different
patients officially diagnosed by medical institutions. This
collection of spectra will allow monitoring diabetes patients
under insulin treatment observing the biochemical changes
during the treatment and the improvement of the patient
when the group of spectra of the diabetes patients
approaches the group of spectra of the control patients [14].
Our article is the starting point for the creation of this large
library of molecular fingerprints of diabetes.

In addition, these results support the development of a
rapid and low-cost method to discriminate between type 1
and type 2 diabetes samples using Raman spectroscopy in
early stages of the disease.

Conclusion

Our preliminary results demonstrated that Raman spec-
troscopy and principal component analysis can be used
to discriminate between serum samples from diabetic and
healthy patients with high sensitivity and specificity. The
study revealed that the main molecular differences between
diabetes and control serum samples were glutathione,
tryptophane, tyrosine, β carotene, and amide III. These
biomolecules could play an important role in the early
type 2 diabetes detection. The results of this exploratory
study demonstrated that serum sample Raman spectroscopy
promises to become a non-invasive support tool of the cur-
rent techniques applied for type 2 diabetes detection by
reducing the number of diagnostic tests and opens a great
expectation for designing a Raman method that allows
discriminating between type 1 and type 2 diabetes patients.
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Jave-Suárez LF, Aguilar-Lemarroy A, González-Solı́s JL (2016)
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